Làm sao phân biệt lập phương và bình phương ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+...+\dfrac{1}{256}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+...-\dfrac{1}{128}+\dfrac{1}{128}-\dfrac{1}{256}\)
\(=1-\dfrac{1}{256}\)
\(=\dfrac{255}{256}\)
b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{13.14}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}\)
\(=1-\dfrac{1}{14}\)
\(=\dfrac{13}{14}\)
c) \(\dfrac{3}{15.18}+\dfrac{3}{18.21}+\dfrac{3}{21.24}+...+\dfrac{3}{87.90}\)
\(=3.\left(\dfrac{1}{15.18}+\dfrac{1}{18.21}+\dfrac{1}{21.24}+...+\dfrac{1}{87.90}\right)\)
\(=3.\left[\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}\right)+\dfrac{1}{3}.\left(\dfrac{1}{18}-\dfrac{1}{21}\right)+\dfrac{1}{3}.\left(\dfrac{1}{21}-\dfrac{1}{24}\right)+...+\dfrac{1}{3}.\left(\dfrac{1}{87}-\dfrac{1}{90}\right)\right]\)
\(=3.\dfrac{1}{3}.\left(\dfrac{1}{15}-\dfrac{1}{18}+\dfrac{1}{18}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{24}+...+\dfrac{1}{87}-\dfrac{1}{90}\right)\)
\(=\dfrac{1}{15}-\dfrac{1}{90}\)
\(=\dfrac{6}{90}-\dfrac{1}{90}\)
\(=\dfrac{5}{90}=\dfrac{1}{18}\)
a) Xét 2 Δ KCN và Δ BAN ta có :
NA = NB (BN là trung tuyến)
Góc BNA = Góc KNC
NK = NB (đề bài)
⇒ Δ KCN = Δ BAN (cạnh, góc, cạnh)
b) Góc ABN = Góc NCK ( vì Δ KCN = Δ BAN)
mà 2 góc trên ở vị trí so le trong
⇒ AB \(//\) KC
mà AB \(\perp\) AC
⇒ KC \(//\) AC
c) Ta có : \(\dfrac{GK}{NK}=\dfrac{2}{3}\) \(\left(GK=\dfrac{2}{3}NK\right)\)
mà KN là trung tuyến Δ ACK (BN là trung tuyến ⇒ N là trung điểm AC)
⇒ G là trọng tâm của Δ ACK
mà CI là trung tuyến Δ ACK (I là trung điểm AK)
⇒ CI sẽ đi qua trọng tâm G
⇒ C, G, I thẳng hàng
a) Ta có tam giác ABC vuông tại B và đường phân giác AD. Khi đó, ta có:
∠BAD = ∠CAD (do AD là đường phân giác)
∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)
Vậy tam giác BAD = tam giác EAD.
b) Ta cần chứng minh AD là trung trực của BE. Để chứng minh điều này, ta cần chứng minh hai góc BAD và BAE bằng nhau.
Ta có: ∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)
∠BAE = ∠DAE (do AD là đường phân giác)
Vậy hai góc BAD và BAE bằng nhau.
Do đó, ta có AD là trung trực của BE.
c) Trên tia đối của BA, lấy K sao cho BK = CE. Ta cần chứng minh rằng 3 điểm E, D, K thẳng hàng.
Ta có: ∠BAD = ∠EAD (do tam giác BAD = tam giác EAD)
∠BAK = ∠CAE (do BK = CE)
Vậy hai góc BAD và BAK bằng nhau.
Do đó, ta có 3 điểm E, D, K thẳng hàng.
#THT
Tính hợp lí:
a) \(\left(-0,4\right)+\dfrac{3}{8}+\left(-0,6\right)\)
\(=\left[\left(-0,4\right)+\left(-0,6\right)\right]+\dfrac{3}{8}\)
\(=-1+\dfrac{3}{8}\)
\(=\dfrac{\left(-8\right)+3}{8}\)
\(=\dfrac{-5}{8}\)
b) \(\dfrac{4}{5}-1,8+0,375+\dfrac{5}{8}\)
\(=\dfrac{4}{5}-\dfrac{9}{5}+\dfrac{3}{8}+\dfrac{5}{8}\)
\(=-1+1\)
\(=0\\\)
c) \(\dfrac{7}{3}.\left(-2,5\right).\dfrac{6}{7}\)
\(=\dfrac{7}{3}.\dfrac{-5}{2}.\dfrac{6}{7}\)
\(=\dfrac{7}{3}.\dfrac{6}{7}.\dfrac{-5}{2}\)
\(=2.\dfrac{-5}{2}\)
\(=-5\)
d) \(\dfrac{7}{12}.\left(-2,34\right)-\dfrac{7}{12}.\left(-0,34\right)\)
\(=\dfrac{7}{12}.\left[\left(-2,34\right)+0,34\right]\)
\(=\dfrac{7}{12}.\left(-2\right)\)
\(=\dfrac{-7}{6}\)
e) \(\dfrac{-8}{3}.\dfrac{2}{11}-\dfrac{8}{3}:\dfrac{11}{9}\)
\(=\dfrac{8}{3}.\dfrac{-2}{11}-\dfrac{8}{3}.\dfrac{9}{11}\)
\(=\dfrac{8}{3}.\left(\dfrac{-2}{11}-\dfrac{9}{11}\right)\)
\(=\dfrac{8}{3}.-1\)
\(=\dfrac{-8}{3}\)
Chúc bạn học tốt
Từ 100 đến 2023 có : (2023-100+1):2= 962 số tự nhiên là số chẵn.
Ta có số tự nhiên chăn nhỏ nhất trong khoảng đó là 100
Và số lớn nhất là 2022
Số lượng số tự nhiên chẵn có trong khoảng đó là:
\(\left(2022-100\right):2+1=962\) (số)
\(\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{4}{3}+\dfrac{19}{3}=\dfrac{1+2+4+19}{3}=\dfrac{26}{3}\)
\(\dfrac{3}{4}+\dfrac{4}{4}+\dfrac{5}{4}+\dfrac{6}{4}+\dfrac{x}{4}+\dfrac{8}{2}+\dfrac{9}{4}\)
=\(\dfrac{3}{4}+\dfrac{4}{4}+\dfrac{5}{4}+\dfrac{6}{4}+\dfrac{x}{4}+\dfrac{16}{4}+\dfrac{9}{4}\)
=\(\dfrac{3+4+5+6+x+16+9}{4}=\dfrac{43+x}{4}\)
Cảm ơn và chúc Lê Minh Quang học tốt nhé!
Mình đã tick rùi nha
Thanks
a) \(\dfrac{-12}{17}< \dfrac{x}{17}< \dfrac{-8}{17}\)
\(\Rightarrow-12< x< -8\)
\(\Rightarrow x\in\left\{-11;-10;-9\right\}\)
b) \(\dfrac{-1}{2}< x< \dfrac{5}{3}\)
\(\Rightarrow\dfrac{-3}{6}< x< \dfrac{10}{6}\)
\(\Rightarrow x\in\left\{\dfrac{-2}{6};\dfrac{-1}{6};0;\dfrac{1}{6};...;\dfrac{7}{6};\dfrac{8}{6};\dfrac{9}{6}\right\}\)
c) \(3,456< x\le7,89\)
\(\Rightarrow x\in\left\{3,456;3,457,3,458;...;7,89\right\}\)
d) \(5,82< \overline{5,8x0}< 8,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(32,82< \overline{3x,850}< 35,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)
xLập phương = x3
xBình phương = x2
bình phương = x2
lập phương = x3