tìm x biết :\(3^{x-1}+3^x+3^{x+2}=117\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:a/b<c/d nên ad<bc
(1)ab+ad<ab+bc=a(b+d)<b(a+c)=>a/b<a+c/b+d(thêm ab vào hai vế)
(2)ad+cd<bc+cd=(a+c)d<(b+d)c=>a+c/b+d<c/d(thêm cd vào hai vế)
từ(1)và(2)ta có:a/b<a+c/b+d<c/d
mình ko biết vẽ hình trên này bạn tự vẽ đi
ta có:
ME//AD suy ra \(\hept{\begin{cases}DAF=AFE\left(soletrong\right)\\DAC=AEF\left(dongvi\right)\end{cases}}\) mà \(DAC=DAF\) vì AD là phân giác góc A
\(\Rightarrow AEF=AFE\)
Vì OC vuông góc với OA
=> COA là góc vuông
=> COA = 90o
Vì OD vuông góc với OB
=> DOB là góc vuông
=> DOB = 90o
Ox là p/g AOB
=> xOB = xOA = BOA/2 = 75o
Vì Ox,Oy đối nhau
=> xOB và BOy kề bù
=> xOB + BOy = 180o
=> BOy = 105o
Vì BOD < BOy ( 90<105)
=> BOD + DOy = BOy
=> DOy = 15o
Về phần yOC cũng tính tương tự đc yOC = 15o
Vì Ox nằm giữa OB và OA
và DOy + yOC = 30o < 180o
=> Tia đối Ox là Oy sẽ nằm giữa OD và OC
Mà yOC = DOy = 15o
=> đpcm
a) do 2 tam giác ABD và ADE là 2 tam giác vuông mà có góc BAD và EAD bằng nhau ( t/chất) và chung AD
nên 2 tam giác này bằng nhau ( ch-gn) nên AB = AE 2 cạnh tương ứng
b) Do AB =AE chứng minh trên nên tam giác ABE cân ở A mà có tia phân giác AD của góc BAC nên AD vuông góc với cạnh đáy BE của tam giác ABE ( tính chất tia phân giác trong tam giác cân )
c) Do góc BCA = 30 độ ( tự tính được do ta biết số đo góc ABC = 90 và BAC = 60 ) mà có tia p/g của BAC nên góc DAC = 1/2 góc BAC nên góc DAC = 30 độ = góc DCA => tam giác DAC cân ở D
=> AD = DC
Do AD>AB (theo tính chất cạnh huyền > cạnh góc vuông ) mà AD = DC nên DC > AB
ĐPCM
( bạn tích đúng cho mình nhé, gõ mỏi hết cả tay =))) )
Sửa đề : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và \(x^2-y^2-z^2=-16\)
Ta có : \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow2y=3x\Rightarrow x=\frac{2y}{3}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Leftrightarrow4z=5y\Rightarrow z=\frac{5y}{4}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(x^2-y^2-z^2=-16\);ta được :
\(\left(\frac{2y}{3}\right)^2-y^2-\left(\frac{5y}{4}\right)^2=-16\)
\(\Leftrightarrow\frac{4y}{9}^2-y^2-\frac{25y^2}{16}=-16\)
\(\Leftrightarrow64y^2-144y^2-225y^2=-16.144\)
\(\Leftrightarrow-305y^2=-2304\)
\(\Leftrightarrow y^2=\frac{2304}{305}\Rightarrow y=\sqrt{\frac{2304}{305}}=2,748472005\)
Với \(y=\sqrt{\frac{2304}{305}}\Rightarrow x=\frac{2.\sqrt{\frac{2304}{305}}}{3}=-183231467;z=\frac{5.\sqrt{\frac{2034}{305}}}{4}=3,435590006\)
Vậy .................
\(\left[\left(\frac{4}{3}\right)^{-2}.\left(\frac{3}{4}\right)^3\right]:\left(-\frac{2}{3}\right)^{-3}\)
\(=\frac{9}{16}.\frac{27}{64}:\left(-\frac{27}{8}\right)\)
\(=-\frac{9}{128}\)