tìm x biết x chia hết cho 35 , x chia hết cho 63 , x chia hết cho 105
a) những số có 3 chữ số thuộc tập hợp trên là
b) số 128 có phải là bội của x không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(2S=2^2+2^3+2^4+...+2^{201}\)
\(< =>S=2+2^2+2^3+...+2^{200}\)
Nên \(2S-S=\left(2^2+2^3+2^4+...+2^{201}\right)-\left(2+2^2+2^3+...+2^{200}\right)\)
\(< =>S=2^{201}-2< =>2S=2^{202}-4\)
Vậy \(2S=2^2+2^3+2^4+...+2^{201}=2^{202}-4\)
a):động từ:lội ,qua,thả,đi,ra,nô đùa.
danh từ:tôi,quý,sơn
phó từ:không ,như,thằng,và, không ,nữa
b)danh từ :tôi,áo,mình
động từ :cảm thấy
tính từ:vải,đen,trang trọng,đứng đắn,dài
chỉ từ:trong
a; xy+2x + 2y =3
\(\Leftrightarrow x\left(y +2\right)+2y=3\)
\(\Leftrightarrow x\left(y+2\right)+2\left(y+2\right)=7\)
\(\Leftrightarrow\left(y+2\right).\left(x+2\right)=7\)
Do x;y\(\in\) Z nên y+2 ; x+2 \(\in\)Z
\(\Rightarrow\hept{\begin{cases}y+2=1\\x+2=7\end{cases}\Rightarrow\hept{\begin{cases}y=-1\\x=5\end{cases}}}\)
\(\hept{\begin{cases}y+2=7\\x+2=1\end{cases}\Rightarrow\hept{\begin{cases}y=5\\x=-1\end{cases}}}\)
\(\hept{\begin{cases}y+2=-1\\x+2=-7\end{cases}\Rightarrow\hept{\begin{cases}y=-3\\x=-9\end{cases}}}\)
\(\hept{\begin{cases}y+2=-7\\x+2=-1\end{cases}\Rightarrow\hept{\begin{cases}y=-9\\x=-3\end{cases}}}\)
Vậy (x;y)\(\in\)(5;-1) ; (-1;5) ; (-9;-3 ) ; (-3;-9)
a) xy + 2x + 2y = 3
=> x(y + 2) + 2y = 3
=> x(y + 2) + 2y + 4 = 7
=> x(y + 2) + 2(y + 2) = 7
=> (x + 2)(y + 2) = 7
Ta có 7 = 1.7 = (-1).(-7)
Lập bảng xét các trường hợp
x + 2 | 1 | 7 | -1 | -7 |
y + 2 | 7 | 1 | -7 | -1 |
x | -1 | 5 | -3 | -9 |
y | 5 | -1 | -9 | -3 |
Vậy các cặp (x;y) thỏa mãn là (-1;5) (5;-1) ; (-3; -9) ; (-9;-3)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
=> \(\frac{20+xy}{4x}=\frac{1}{8}\)
=> 8(20 + xy) = 4x
=> 2(20 + xy) = x
=> 40 + 2xy = x
=> 2xy + 40 - x = 0
=> 2xy - x = -40
=> x(2y - 1) = -40
Vì y nguyên => 2y - 1 nguyên
mà 2y - 1 luôn không chia hết cho 2 với mọi y nguyên (1)
lại có x(2y - 1) = - 40
=> 2y - 1 \(\in\)Ư(-40) (2)
Từ (1) (2) => \(2y-1\in\left\{5;-5;1;-1\right\}\)
Khi 2y - 1 = 5 => x = -8
=> y = 3 ; x = -8
Khi 2y - 1 = -5 => x = 8
=> y = -2 ; x = 8
Khi 2y - 1 = 1 => x = -40
=> y = 1 ; x = -40
Khi 2y - 1 = - 1 => x = 40
=> y = 0 ; x = 40
Vậy các cặp (x;y) thỏa mãn là ( -8 ; 3) ; (8 ; -2) ; (-40 ; 1) ; (40 ; 0)
Đẳng thức \(\left(x-y\right)\left[2019\left(x+y\right)+1\right]=y^2\)
d là ƯCLN (x-y);[(x+y)2019+1)
\(\Leftrightarrow\hept{\begin{cases}x-y⋮d\\\left(x+y\right)2019+1⋮d\end{cases}\Rightarrow y^2⋮d^2\Leftrightarrow y⋮d}\)
=> 2019(y+x) chia hết cho d => 2y.2019+1 chia hết cho d
=> d=1
=> (x-y);2019(x+y)+1 là 2 số nguyên tố cùng nhau mà tích là 2 số chính phương => x-y là số chính phương
Ta có : 3n + 2 - 2n + 4 + 3n + 2n
= 3n(32 + 1) - 2n(24 - 1)
= 3n.10 - 2n.15
= 3n - 1.3.10 - 2n - 1.2.15
= 3n - 1.30 - 2n - 1.30
= 30(3n - 1 - 2n - 1) \(⋮\)30 (đpcm)
Câu a có rồi
b) Bg
Gọi số của đề bài là a (a \(\inℕ^∗\))
Theo đề bài: a = 7x + 3, a = 17y + 12, a = 23z + 7 (x, y, z \(\inℕ\))
=> a + 39 = 7x + 3 + 39 = 7x + 42 = 7x + 7.6 = 7.(x + 6) \(⋮\)7
=> a + 39 = 17y + 12 + 39 = 17y + 51 = 17y + 17.3 = 17.(y + 3) \(⋮\)17
=> a + 39 = 23z + 7 + 39 = 23z + 46 = 23z + 23.2 = 23.(z + 2) \(⋮\)23
=> a + 39 \(⋮\)7; 17; 23
Ta có: 2737 = 7.17.23 (phân tích thừa số nguyên tố)
=> a + 39 \(⋮\)2737
=> a = 2737p - 39
=> a = 2737p - 2737 + 2698
=> a = 2737.(p - 1) + 2698
Vì 2698 < 2737
=> a chia 2737 dư 2698
Vậy số đó chia 2737 dư 2698
a) |-45| + |-15| : 3 + |10|.5
= 45 + 15 : 3 + 10.5
= 45 + 5 + 50 = 100
b) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+\frac{3^2}{10.13}+\frac{3^2}{13.16}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=3\left(1-\frac{1}{16}\right)=3.\frac{15}{16}=\frac{45}{16}\)
Ta có : D = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}=\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}< 1\)
=> D < 1 (đpcm)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^3}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{10^2}< \frac{1}{9.10}\)
=)) \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
Mà \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}< 1\)
=)) A < 1 (đpcm)
A: What do you do after school?
B: I go home and start lunch.
sai thì không biết nha
mk mới lên lớp 5
A : What do you do after school ?
B : I go home and start lunch
CHÚC BẠN HỌC TỐT !
Ta có \(\hept{\begin{cases}x⋮35\\x⋮63\\x⋮105\end{cases}}\Rightarrow x\in BC\left(35;63;105\right)\)
Lại có 35 = 5.7
63 = 32.7
105 = 3,5,7
=> BCNN(35;63;105) = 7.5.32 = 315
mà \(BC\left(35;63;105\right)=B\left(315\right)\)
=> \(x\in B\left(315\right)\)
=> \(x\in\left\{0;315;630;945;1260;...\right\}\)
Vì 99 < x < 1000
=> \(x\in\left\{315;630;945;1260\right\}\)
b) Vì 128 không chia hết cho 315
=> 128 không là bội của x