Tính M = 820 + 420 / 425 + 645
mk sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{2}\right)^{10}-\left(\frac{1}{4}\right)^{20}\)
\(=\left(\frac{1}{2}\right)^{10}-\left[\left(\frac{1}{2}\right)^2\right]^{20}\)
\(=\left(\frac{1}{2}\right)^{10}-\left(\frac{1}{2}\right)^{40}\)
\(=\left(\frac{1}{2}\right)^{10}-\left(\frac{1}{2}\right)^{10}\cdot\left(\frac{1}{2}\right)^{30}\)
\(=\left(\frac{1}{2}\right)^{10}\cdot\left[1-\left(\frac{1}{2}\right)^{30}\right]\)
\(=\frac{1}{2^{10}}\cdot\frac{1-2^{30}}{2^{30}}\)
\(=\frac{1-2^{30}}{2^{40}}\)
a) \(\left(2x+3\right)^2=\frac{9}{21}\)
<=> \(\orbr{\begin{cases}2x+3=\frac{3}{11}\\2x+3=\frac{-3}{11}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-1\frac{4}{11}\\x=-1\frac{7}{11}\end{cases}}\)
Vậy...
\(\frac{4^5.9^4-2.6^9}{2^{10}.3^6.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^6.2^2.5}=\frac{2^{10}.\left(3^8-3^9\right)}{2^{12}.3^6.5}=\frac{3^8-3^9}{2^2.3^6.5}=\frac{3^7\left(3-3^2\right)}{2^2.3^6.5}=\frac{3.\left(-6\right)}{20}\)\(=\frac{-18}{20}=\frac{-9}{10}\)
\(\frac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^6\cdot20}\)
\(=\frac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{12}\cdot3^6\cdot5}\)
\(=\frac{2^{10}\cdot3^8\cdot\left(1-3\right)}{2^{12}\cdot3^6\cdot5}\)
\(=\frac{3^2\cdot\left(-2\right)}{2^2\cdot5}\)
\(=\frac{-9}{10}\)
\(\left(x^4\right)^2=\frac{x^{12}}{x^5}\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8-x^7=0\)
\(\Rightarrow x^7\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^7=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vì :\(x\ne0\Rightarrow x=1\)
b)\(x^{10}=25.x^8\)
\(\Leftrightarrow x^{10}-5^2.x^8=0\)
\(\Rightarrow x^8\left(x^2-5^2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^8=0\\x^2-5^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=5^2=25\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Từ I hạ IG; IK lần lượt vuông góc với AC; AB
Do BI; CI là phân giác góc và C nên IH=IG=IK
=> HC=GC=3 (cm) ; HB=KB=2 (cm)
Dễ dàng chứng minh 2 tam giác AKI và AGI là 2 tam giác vuông cân
=> IG=AG; IK=AK. Mà IH=IK=IG => AG=AK=IH=1 (cm)
=> CABC= AK+KB+HB+HC+AG+GC=1+2+2+3+1+3=12 (cm).
ta có :
a. \(a=\frac{\left(a+b\right)+\left(a-b\right)}{2}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
b. \(a=\frac{2\left(2a+b\right)+\left(3a-2b\right)}{7}\) nên a chắc chắn là số hữu tỉ và do đó b cũng là số hữu tỉ
( x + 2 ) ( x - 3 ) > 0
Xét 2 trường hợp :
TH1 : cả 2 thừa số đều lớn hơn 0
\(\hept{\begin{cases}x+2>0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x>3\end{cases}\Rightarrow}x>3}\)
TH2 : cả 2 thừa số đều bé hơn 0
\(\hept{\begin{cases}x+2< 0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x< 3\end{cases}\Rightarrow}x< -2}\)
Vậy,...........
Tìm x :
( x + 2 ) . ( x - 3 ) > 0
<=> x + 2 và x - 3 cùng dấu
<=> TH1 :
\(\hept{\begin{cases}x+2>0\\x-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-2\\x>3\end{cases}\Leftrightarrow x>3}}\)
TH2 :
\(\hept{\begin{cases}x+2< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< -2\\x< 3\end{cases}}}\Leftrightarrow x< -2\)
Vậy với x > 3 hoặc x < -2 thì ( x + 2 ) . ( x - 3 ) > 0
(x-1).(x+2) <0
khi \(\orbr{\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}}\)<-> -2> X>1 (vl) loại
và\(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)1>x>-2 (TM)
vậy 1>x>-2
Tìm x :
( x - 1 ) . ( x + 2 ) < 0
<=> x -1 và x + 2 khác dấu
<=> TH1 :
\(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}\Leftrightarrow-2< x< 1}}\)
TH2 :
\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}}\)( vô lí )
Vậy với -2< x < 1 thì ( x - 1 ) . ( x + 2 ) < 0
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}\)
\(=\frac{2^{40}}{2^{30}}=2^{10}\)
\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}\)
\(=\frac{2^{60}+2^{40}}{2^{25}+2^{30}}\)
\(=\frac{2^{40}\left(2^{20}+1\right)}{2^{25}\left(1+2^5\right)}\)
\(=\frac{2^{15}\left(2^{20}+1\right)}{1+2^5}\)
\(=\frac{2^{35}+2^{15}}{1+2^5}\)