1+2+3+4+.......100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x khác +-2
\(C=\left(\frac{2}{x+2}-\frac{x}{\left(x-2\right)\left(x+2\right)}+\frac{1}{x-2}\right).\left(\frac{x-2}{x^2-4+6-x^2}\right)\\ \)
\(C=\frac{2\left(x-2\right)-x+\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}.\left(\frac{x-2}{2}\right)=\frac{2\left(x-1\right)\left(x-2\right)}{2.\left(x-2\right)\left(x+2\right)}\)
\(C=\frac{x-1}{x+2}\)
C=[2/(x+2)-x/(x^2-4)-1/(2-x)]:[x+2+(6-x^2)/(x-2)]
=[2/(x+2)-x/(x-2)(x+2)-(-1)/(x-2)]:[x+2+(6-x^2)/(x-2)]
=[2x-4-x+x+2/(x-2)(x+2)]:[(x^2-4+6-x^2)/(x-2)]
=2x-2/(x-2)(x+2) . (x-2)/2
=2(x-1)/(x-2)(x+2) . (x-2)/2
=x-1/x+2
Với x = 0 thì \(y^2=2\) (loại)
Với \(x\ge1\) thì
\(2^x=y^2-1=\left(y-1\right)\left(y+1\right)\)
Ta thấy (y - 1) và (y + 1) là 2 số chẵn liên tiếp. Mà \(2^x\) chỉ có ước nguyên tố là 2 nên (y - 1) và (y + 1) cũng chỉ có ước nguyên tố là 2.
Từ đây ta suy ra được:
\(\hept{\begin{cases}y-1=0\\y+1=2\end{cases}}\) hoặc \(\hept{\begin{cases}y-1=2\\y+1=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=1\left(l\right)\\y=3\end{cases}}\)
\(\Rightarrow x=3\)
2^x + 1 = y^2
2^x = y^2-1
2^x =(y-1)(y+1)
=> y+1 = 2^x/(y-1)
Do y+1 nguyên => y-1 là ước của 2^x, chỉ có thể có dạng 2^n với n>=1 hoặc y-1 =1 (loại)
=> y-1 có dạng 2^n => y-1 = 2^n
=> y+1 = 2^n +2
=> 2^x = 2^n(2^n+2)= 2^(n+1).[2^(n-1) +1] (*)
Nếu n> 1 thì 2^(n-1) +1 là số lẻ trong khi 2^x chẵn => (*) Vô nghiệm
Với n=1 => y =3 => x= 3
Ta có: abc > 0 nên xảy ra 2 trường hợp hoặc là a,b,c đều dương (bài toán được chứng minh) hoặc trong 3 số sẽ có 2 số âm 1 số dương.
Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a< 0\\b< 0\\c>0\end{cases}}\)
Ta đặt: \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\) thì theo đề bài ta có
\(\hept{\begin{cases}c-x-y>0\\xy-cx-xy>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}c>x+y\left(1\right)\\xy>cx+cy\left(2\right)\end{cases}}\)
Từ (1) ta có thể suy ra được: \(\hept{\begin{cases}cx>x^2+xy\\cy>y^2+xy\end{cases}}\)
\(\Rightarrow cx+cy>x^2+2xy+y^2\left(3\right)\)
Từ (2) và (3) ta có: \(xy>cx+cy>x^2+2xy+y^2\)
\(\Leftrightarrow0>x^2+xy+y^2\) (sai)
Từ đây ta thấy rằng chỉ có trường hợp \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\) là đúng
Rõ rảng abc > 0 nên a,b,c phải khác 0
+ Giả sử trong a,b,c có 1 số bé hơn 0,vì vai trò a,b,c như nhau giả sử là a ta có
a < 0 ,do abc > 0 => bc < 0 do a(b + c) + bc > 0 => a(b + c) > -bc hay a(b + c) > 0 do a < 0 => b + c < 0
=> a + b + c < 0 mâu thuẫn với 1 giả thiết a + b + c > 0
+ Giả sử có 2 số nhỏ hơn không,tương tự giả sử là a và b ta có
a + b + c > 0 => c > 0 => abc < 0 mâu thuẫn
+ còn a,b,c đều nhỏ hơn 0 thì hiển nhiên a + b + c < 0 mâu thuẫn với a + b + c > 0
Vậy bất buộc cả 3 a,b,c đều phải đồng thời lớn hơn 0
Số cần tìm có hai chữ số có dạng 10a+b và a+b=18.
Vì đổi chỗ 2 chữ số đó được số mới nhỏ hơn số cũ 18 đơn vị nên ta có:10a+b-(10b+a)=18
Hay: 9a-9b=18
Nên a-b=2 mà a+b=16 nên suy ra: a=9 và b=7
Vậy số cần tìm là 97.
Nói chung đề thế nào cũng làm được nhưng nghe có vẻ nó ngang thôi
\(m^2x+3m-2=m+x\left(1\right)\)
\(\Leftrightarrow\left(m^2-1\right)x+3m-2=0\)
nếu m=+-1 \(\Leftrightarrow0.x+-3-2=0\Rightarrow vonghiem\)
nếu m khác +-1 phương trình luôn có nghiệm duy nhất
\(x=\frac{2-3m}{m^2-1}\)
a) \(x_0>0\Rightarrow\frac{2-3m}{m^2-1}>0\Rightarrow\orbr{\begin{cases}m< -1\\\frac{2}{3}< m< 1\end{cases}}\)
b) pt vô nghiệm khi m=+-1
có nghiệm duy nhất x=....khi m khác +-1
(x - 5)(2x + 3) - 2x(x - 3) + x + 7
= x(2x + 3) - 5(2x + 3) - (2x2 - 6x) + x + 7
= 2x2 + 3x - 10x - 15 - 2x2 + 6x + x + 7
= (2x2 - 2x2) + (3x + 6x + x - 10x) - 15 + 7
= 0 + 0 - 8
= -8
(x-5)(2x+3)-2x(x-3)+x+7
=2x^2+3x-10x-15-2x^2+6x+x+7
=2x^2-2x^2+3x-10x+6x+x-15+7
=-8
1 + 2 + 4 + ...+ 100
số số hạng trong dãy trên là:
(100 - 1 ) : 1 + 1 = 100 số số hạng
tổng dãy trên là:
(100 + 1 ) x 100 : 2= 5050
đ/s:5050
K nha