Viết các biểu thức dưới đây thành dạng Bình phương của 1 tổng hoặc hiệu
a) x2 + 2x + 1 _ b) 9x2 + y2 + 6xy _ c) 25a2 + 4b2 - 20ab_ d) x2 - x + 1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(a^2-b^2=\left(a+b\right)\left(a-b\right)\) => \(\frac{a^2-b^2}{a-b}=a+b\)
\(a^4-b^4=\left(a^2-b^2\right)\left(a^2+b^2\right)\)=> \(\frac{a^4-b^4}{a^2-b^2}=a^2+b^2\)
\(a^8-b^8=\left(a^4-b^4\right)\left(a^4+b^4\right)\) => \(\frac{a^8-b^8}{a^4-b^4}=a^4+b^4\)
...............................................................................................
\(a^{64}-b^{64}=\left(a^{32}-b^{32}\right)\left(a^{32}+b^{32}\right)\) => \(\frac{a^{64}-b^{64}}{a^{32}-b^{32}}=a^{32}+b^{32}\)
thay vào ta được
\(\left(a+b\right)\left(a^2+b^2\right)\left(a^4+b^4\right)......\left(a^{32}+b^{32}\right)\)
\(=\frac{a^2-b^2}{a-b}.\frac{a^4-b^4}{a^2-b^2}.\frac{a^8-b^8}{a^4-b^4}.............\frac{a ^{64}-b^{64}}{a^{32}-b^{32}}\)
\(=\frac{a^{64}-b^{64}}{a-b}\)
mà a-b= 1 nên \(\frac{a^{64}-b^{64}}{a-b}=a^{64}-b^{64}\)
a) \(a\left(a-6\right)+10=a^2-6a+10\)
\(=a^2-6a+9+1\)
\(=\left(a-3\right)^2+1\)
vì \(\left(a-3\right)^2\ge0\) với mọi a nên \(\left(a-3\right)^2+1>0\) hay \(a\left(a-6\right)+10>0\)
b) \(\left(x-3\right)\left(x-5\right)+4\)
\(=x^2-8x+15+4\)
\(=x^2-8x+16+3\)
\(=\left(x-4\right)^2+3\)
vì \(\left(x-4\right)^2\ge0\) với mọi x nên \(\left(x-4\right)^2+3>0\) hay \(\left(x-3\right)\left(x-5\right)+4>0\)
a) x2 + 2x +1
= (x + 1)2
b) 9x2 + y2 + 6xy
= (3x + y)2
c) 25a2 + 4b2 - 20ab
= (5a - 2b)2
d) x2 - x + 1/4
= (x - 1/2)2