Cho a,b,c dương. CMR: a/b+b/c+c/a>a+b+c (sử dụng Bất đẳng thức cô si)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-y^2-2x+2y=\left(x^2-y^2\right)-\left(2x-2y\right)=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right).\) \(b,2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)
\(c,3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3.\left(\left(a-b\right)^2-\left(2c\right)^2\right)\)
\(=3\left(a-b-2c\right).\left(a-b+2c\right)\)
\(d,x^2-25+y^2-2xy=\left(x^2-2xy+y^2\right)-5^2=\left(x-y\right)^2-5^2\)
\(=\left(x-y+5\right)\left(x-y-5\right)\)
\(e,a^2+2ab+b^2-ac-bc=\left(a+b\right)^2-c\left(a+b\right)=\left(a+b\right)\left(a+b-c\right)\)
\(f,x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\(h,x^2\left(x-1\right)+16\left(1-x\right)=x^2\left(x-1\right)-16\left(x-1\right)=\left(x-1\right)\left(x^2-16\right)=\)
\(=\left(x-1\right)\left(x-4\right)\left(x+4\right)\)
\(a.x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-5^2\right)-\left(x^3+2^3\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow x^3-x^3-25x=8+3\)
\(\Leftrightarrow x=\frac{11}{-25}\)
Vậy x có nghiệm là \(\frac{-11}{25}.\)
\(\)
xét tam giác BDC ta có
E là trung điểm DB ( vì EB = ED)
M là trung điểm của BC (GT)
=> ME là đường trung bình của tam giác BDC
=> ME //DC ; ME = 1/2DC
b) xét tam giác AEM ta có
D là trung điểm AE ( vì AD = DE)
DC // EM ( câu a)
=> DC đi qua trung điểm AM
=> I là trung điểm AM
1.(3x+1)2=9x2+6x+1
2.(2y+1)2=4y2+4y+1
3.(x+1)2=x2+2x+1
4.(4y+1)2=16y2+8y+1