K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2023

P M Q N E (Hình minh họa)

Kẻ \(PQ\perp MN\) ở Q

Theo giả thiết: \(ME=3\times NE\)

\(\Rightarrow NE=\dfrac{1}{4}MN\)

Ta có:

\(S_{\Delta MNP}=\dfrac{1}{2}.PQ.MN\)

\(S_{\Delta NEP}=\dfrac{1}{2}.PQ.NE=\dfrac{1}{2}.PQ.\dfrac{1}{4}.MN=\dfrac{1}{8}PQ.MN\)

\(\Rightarrow\dfrac{S_{\Delta MNP}}{S_{\Delta NEP}}=\dfrac{\dfrac{1}{2}.PQ.MN}{\dfrac{1}{8}.PQ.MN}\)

\(\Leftrightarrow\dfrac{S_{\Delta MNP}}{32,5}=4\)

\(\Leftrightarrow S_{\Delta MNP}=130cm^2\).

 

AH
Akai Haruma
Giáo viên
30 tháng 1 2023

Lời giải:
ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow x^2-4x+21-6\sqrt{2x+3}=0$

$\Leftrightarrow (x^2-6x+9)+[(2x+3)-6\sqrt{2x+3}+9]=0$

$\Leftrightarrow (x-3)^2+(\sqrt{2x+3}-3)^2=0$

Ta thấy: $(x-3)^2\geq 0; (\sqrt{2x+3}-3)^2\geq 0$ với mọi $x\geq \frac{-3}{2}$

Do đó để tổng của chúng bằng $0$ thì:
$(x-3)^2=(\sqrt{2x+3}-3)^2=0$

$\Leftrightarrow x=3$ (tm)

30 tháng 1 2023

Theo đề ra, ta có:

\(a^{100}+b^{100}=a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Leftrightarrow\left(a^{100}+b^{100}\right).\left(a^{102}+b^{102}\right)=\left(a^{101}+b^{101}\right)^2\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)+a^{202}+b^{202}=a^{202}+b^{202}+2a^{101}.b^{101}\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2\right)=2a^{101}.b^{101}\)

\(\Leftrightarrow a^{100}.b^{100}.\left(a^2+b^2-2ab\right)=0\)

\(\Leftrightarrow a=b=0\)

\(\Rightarrow a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Rightarrow a^{100}=a^{101}\)

\(\Leftrightarrow a^{100}.\left(a-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)

\(\Rightarrow A=a^{2015}+b^{2015}=1+1=2\).

 

30 tháng 1 2023

\(Từ:\) \(a^{100}+b^{100}=a^{101}+b^{101}\)

\(\Leftrightarrow a^{100}\left(a-1\right)+b^{100}\left(b-1\right)=0\left(1\right)\)

\(và\) \(a^{101}+b^{101}=a^{102}+b^{102}\)

\(\Leftrightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)=0 \left(2\right)\)

\(Từ\left(1\right)\) \(và\) \(\left(2\right)\)

\(\Rightarrow a^{101}\left(a-1\right)+b^{101}\left(b-1\right)-a^{100}\left(a-1\right)-b^{100}\left(b-1\right)=0\)

\(\Leftrightarrow a^{100}\left(a-1\right)^2+b^{100}\left(b-1\right)^2\)

\(Do\) \(a,b>0\Rightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Rightarrow A=1+1=2\)

em không chắc cho lắm ạ

 

30 tháng 1 2023

\(B=\left\{x\inℤ|-\dfrac{18}{3}< x< 0\right\}\)

30 tháng 1 2023

P = (a + b + c)3 - 4(a3 + b3 + c3) - 12abc

= (a + b + c)3 - 4(a3 + b3 + c3 + 3abc) 

= (a + b + c)3 - 8c3 - 4(a3 + b3 - c3 + 3abc) 

= (a + b + c)3 - (2c)3 - 4(a3 + b3 - c3 + 3abc) 

Có (a + b + c)3 - (2c)3 

= (a + b - c)[(a + b + c)2 + (a + b + c).2c + 4c2]

= (a + b - c)(a2 + b2 + c2 + 2ab + 2bc + 2ca + 2ac + 2bc + 2c2 + 4c2)

= (a + b - c)(a2 + b2 + 7c2 + 4bc + 4ac + 2ba)

Lại có a3 + b3 - c3 + 3abc

 = (a + b)3 - c3 - 3ab(a + b) + 3abc

= (a + b - c)[(a + b)2 + (a + b)c + c2 - 3ab]

= (a + b - c)(a2 + b2 + c2 + ac + bc - ab) 

Khi đó P = (a + b - c)(a2 + b2 + 7c2 + 4bc + 4ac + 2ba) - 4(a + b - c)(a2 + b2 + c2 + ac + bc - ab) 

= (a + b - c)(-3a2 - 3b2 + 3c2 + 6ba)

= 3(a + b - c)(- a2 - b2 + 2ab + c2)

= 3(a + b - c)[c2 - (a - b)2]

= 3(a + b - c)(a + c - b)(c - a + b) 

Nếu P < 0 thì  3(a + b - c)(a + c - b)(c - a + b)  < 0

<=>  (a + b - c)(a + c - b)(c + b - a) < 0

=> Có ít nhất một hạng tử trái dấu với 2 hạng tử còn lại

Với a,b,c > 0

Giả sử \(\left\{{}\begin{matrix}a+b-c< 0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\) => a;b;c không là 3 cạnh tam giác 

hoặc \(\left\{{}\begin{matrix}a+b-c>0\\b+c-a< 0\\a+c-b< 0\end{matrix}\right.\) cũng tương tự

Vậy a,b,c không là 3 cạnh tam giác 

30 tháng 1 2023

Không kết luận được bất cứ điều gì nếu không có thêm điều kiện a;b;c là các số dương

Chia khu rừng đó ra thành những ô vuông nhỏ 

Diện tích khu rừng được chia thành ô vuông nhỏ nên số hình vuông sẽ là: 

1 x 3 = 3 hình

Diện tích hình vuông nhỏ là: 

3 : 3 = 1 km vuông 

Cạnh của hình vuông sẽ là 1 km 

Chiều dài của khu rừng là: 

1 x 3 = 3 km

Chiều rộng của khu rừng là: 

1 x 1 = 1 km 

Chu vi của khu rừng là: 

( 3 + 1) x 2 = 8 km

30 tháng 1 2023

loading...  

30 tháng 1 2023

help

 

30 tháng 1 2023

ĐKXĐ : a;b;c  \(\ne0\)

Ta có : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2000}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}-\dfrac{1}{a}\)

\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{-\left(b+c\right)}{a\left(a+b+c\right)}\)

\(\Leftrightarrow\left(b+c\right)\left(\dfrac{1}{bc}+\dfrac{1}{a\left(a+b+c\right)}\right)=0\)

\(\Leftrightarrow\left(b+c\right).\dfrac{a\left(a+b+c\right)+bc}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(b+c\right).\dfrac{a^2+ab+ac+bc}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\dfrac{\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b+c=0\\a+b=0\\a+c=0\end{matrix}\right.\left(1\right)\)

Từ (1) kết hợp a + b + c = 2000 ta được điều phải chứng minh

30 tháng 1 2023

bài 5 :

hiện tại Nam và anh Nam có sô tuổi là : \(18+\left(6\times2\right)=30\left(tuổi\right)\)

Nam có số tuổi là : \(30:\left(2+3\right)\times2=12\left(tuổi\right)\)

                  \(đs...\)

31 tháng 1 2023

Tổng ba cạnh tam giác lúc đầu là : 327,46 cm

Khi tăng cạnh thứ nhất thêm 2,46cm và giảm cạnh thứ hai đi 5,32cm thì tổng ba cạnh của tam giác lúc sau là:

327, 46  + 2,46 - 5,32 = 324,6 (cm)

Mỗi cạnh của tam giác lúc sau bằng nhau và bằng :

324,6 : 3 = 108,2 (cm)

Vì cạnh thứ nhất tăng thêm và cạnh thứ hai giảm đi thì ba cạnh bằng nhau nên cạnh thứ nhất là cạnh bé nhất và có độ dài là:

108,2 - 2,46 = 105,74 (cm)

Cạnh hình vuông cạnh cạnh bé nhất của tam giác và bằng 105,74 cm

Diện tích hình vuông là: 

105,74 x 105,74 = 11180,9476 (cm2)

Đs....

30 tháng 1 2023

Khó quá bạn ưi