Cho hình thang cân ABCD có đường chéo BD vuông góc với cạnh bên BC. DB là tia phân giác của góc D. Biết BC = 3cm, chu vi của hình thang là …cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{x^2-x+1}-\frac{1}{x+1}=\frac{2x+2-x^2+x-1}{x^3+1}=\frac{3x+1-x^2}{x^3+1}\\ \)
\(\Rightarrow3x+1-x^2=2x-1\Rightarrow\left(x+1\right)\left(x-2\right)=0\Rightarrow x=2\)
\(\frac{2}{x^2-x+1}=\frac{1}{x+1}+\frac{2x-1}{x^3+1}\)
\(\frac{2}{x^2-x+1}=\frac{1}{x+1}+\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
ĐKXĐ : x\(\ne\)-1
MTC : (x+1)(x^2-x+1)
\(\frac{2x+2}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^2-x+1+2x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)
2x+2=x^2-x+1+2x-1
-x^2+2x-2x+x=-2+1-1
x-x^2=-2
x(1-x)=-2
.....................
\(A=\frac{\left(x+1\right)^2+8}{7-\left(y+1\right)^2}\) => không có GTNN cũng chẳng có LN
\(A-1=\frac{1}{1.2}+\frac{1}{2.3}..+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}\)\(=\frac{99}{100}\)
\(A=1+\frac{99}{100}=\frac{199}{100}\)
\(a\sqrt{b-1}+b\sqrt{a-1}\Leftrightarrow\sqrt{a}\sqrt{ab-a}+\sqrt{b}\sqrt{ab-b}\)
\(\le\sqrt{\left(a+b\right)\left(2ab-a-b\right)}\le\frac{a+b-a-b+2ab}{2}=ab\)
BĐT đc chứng minh
\(x=\sqrt{a-1};y=\sqrt{b-1}\) bỏ căn đi viết cho dẽ nhìn
\(x^2=a-1;y^2=b-1\Leftrightarrow\left(x^2+1\right)y+\left(y^2+1\right)x\le\left(x^2+1\right)\left(y^2+1\right)\)
\(\Leftrightarrow\left(x^2+1\right)\left(y^2-2y+1\right)+\left(y^2+1\right)\left(x^2-2x+1\right)\ge0\)
\(\Leftrightarrow\left(x^2+1\right)\left(y-1\right)^2+\left(y^2+1\right)\left(x-1\right)^2\ge0\)Đúng với mọi x,y => dpcm
Đẳng thức khi x=y=1=> a=b=2