K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2017

Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.

4 tháng 2 2017

Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.

4 tháng 2 2017

2x+x+12=0

=> 3x+12=0

=> 3x=-12

=>x=-4

4 tháng 2 2017

3x + 12 = 0

<=> 3x = -12

<=>x   =-12 : 3 =-4

4 tháng 2 2017

A B C H
a) Tam giác ABCvà tam giac HBA  đồng dạng theo trường hợp g-g-g( \(\widehat{BAC}=\widehat{BHA}=90^0\);\(\widehat{B}:chung\);\(\widehat{C}=\widehat{HAB}\)<cùng phụ góc B>)
b)\(AH^2=HC\cdot HB\Leftarrow\frac{AH}{HC}=\frac{HB}{HA}\Leftarrow\)tam giác HAB và tam giác HAC đồng dạng (g-g-g)
<Bạn tự thử chứng minh xem>

2 tháng 5 2017

sao tam giác DEF lại vuông tại A nhỉ  ???

Xét tam giác ABC và  tam giác HBA có  :

goác A =góc H =90 độ 

góc HAB = góc ACB ( cùng phụ góc ABC )

=> tam giác ABC đồng dạng với tam giác HBA  (g-g)

b) xét tam giác AHB và tam giác CHA có  :

gócAHB = góc CHA = 90 độ 

góc BAH = góc ACH (cùng phụ góc  ABC ) 

Suy ra tam giác AHB đồng dạng tam giác CHA 

Suy ra tỉ số  : \(\frac{AH}{CH}=\frac{HB}{AH}\)

SUY RA : AH2=HB.CH 

4 tháng 2 2017

A B C D O M N P Q

Kẻ \(OP⊥AB\)

\(OQ⊥BC\)

Xét tứ giác \(PBQO\) có 3 góc vuông nên là hính chữ nhật. (HCN)

HCN \(PBQO\) có BO là đường phân giác của góc B nên là hình vuông.

\(\Rightarrow OP=OQ\) và \(\widehat{POQ}=90^o\)

\(\Rightarrow\widehat{POQ}=\widehat{MON}\left(=90^o\right)\)

\(\Rightarrow\widehat{POQ}-\widehat{PON}=\widehat{MON}-\widehat{PON}\)

\(\Rightarrow\widehat{NOQ}=\widehat{MOP}\)

Từ đó bạn tự chứng minh \(\Delta NOQ=\Delta MOP\left(g.c.g\right)\)

\(\Rightarrow S_{NOQ}=S_{MOP}\)

\(\Rightarrow S_{NOQ}+S_{OPBN}=S_{MOP}+S_{OPBN}\)

\(\Rightarrow S_{OMBN}=S_{PBQO}\)

\(S_{PBQO}=\frac{BO.QP}{2}=BO^2=\left(\frac{BD}{2}\right)^2=6^2=36\left(cm^2\right)\)

Vậy ...

4 tháng 2 2017

96,20403248

    x^m+x^n+1chia hết x^2+x+1

=>x^m+x^n+x^0chia hết x^2+x^1+x^0

=>x^(m+n+0)chia hết x^(2+1+0)

=>x^(m+n)chia hết x^3

=>m+n chia hết 3

=>m+n thuộc B(3)={0;3;6;......}

nếu m+n thuộc B(3)={0;3;6;......} thì x^m+x^n+1chia hết x^2+x+1

4 tháng 2 2017

đề thế này c/m kiểu j,ko có đk j sao mà làm đc