Ai giải hộ mình câu b với, không cần câu a đâu. Mình đang cần khá gấp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\frac{1}{\sqrt{n}+\sqrt{n+2}}=\frac{\sqrt{n+2}-\sqrt{n}}{\left(\sqrt{n+2}-\sqrt{n}\right).\left(\sqrt{n}+\sqrt{n+2}\right)}\)
\(=\frac{\sqrt{n+2}-\sqrt{n}}{n+2-n}\)
\(=\frac{\sqrt{n+2}-\sqrt{n}}{2}\)
Áp dụng ta có :
\(A=\frac{\sqrt{3}-\sqrt{1}}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+.....+\frac{\sqrt{25}-\sqrt{23}}{2}\)
\(=\frac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+.....+\sqrt{25}-\sqrt{23}}{2}\)
\(=\frac{\sqrt{25}-1}{2}=\frac{5-1}{2}=2\)
TL :
a, y=(2−√3)x−1Ta có: 2−√3>0 nên hàm số đồng biến trên Rb, y=−9x−13−34−(2x−1)=−9x−13−34−2x+1=−11x−112 Có: a=−11<0 nên hàm số nghịch biến trên Rc, y=14(x+3)−13x=14x+34−13x=−112x+34Có: a=−112<0 nên hàm số nghịch biến trên Rd, y=√5x+74−(2x−1)=√5x+74−2x+1=(√5−2)x+74+1Có: √5−2>0 nên hàm số đồng biến trên Ra, y=2-3x-1Ta có: 2-3>0 nên hàm số đồng biến trên Rb, y=-9x-13-34-2x-1=-9x-13-34-2x+1=-11x-112 Có: a=-11<0 nên hàm số nghịch biến trên Rc, y=14x+3-13x=14x+34-13x=-112x+34Có: a=-112<0 nên hàm số nghịch biến trên Rd, y=5x+74-2x-1=5x+74-2x+1=5-2x+74+1Có: 5-2>0 nên hàm số đồng biến trên R.
\(y=\frac{x+7}{4}-\frac{1-3x}{6}\)
\(y=\frac{1}{4}x+\frac{7}{4}-\frac{1}{6}+\frac{1}{2}x\)
\(y=\frac{3}{4}x+\frac{19}{12}\)
Vì \(a=\frac{3}{4}>0\)nên hàm số đồng biến
a, \(P=\frac{a^3-a+2b-\frac{b^2}{a}}{\left(1-\sqrt{\frac{a+b}{a^2}}\right)\left(a+\sqrt{a+b}\right)}:\left[\frac{a^2\left(a+b\right)+a\left(a+b\right)}{\left(a-b\right)\left(a+b\right)}+\frac{b}{a-b}\right]\)
\(=\frac{\frac{a^4-a^2-2ab-b^2}{a}}{\frac{\left(a-\sqrt{a+b}\right)\left(a+\sqrt{a+b}\right)}{a}}:\left[\frac{\left(a+b\right)\left(a^2+a\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b}{a-b}\right]\)
\(=\frac{a^4-a^2-2ab-b^2}{a^2-a-b}:\frac{a^2+a+b}{a-b}\)
\(=\frac{a^4-a^2-2ab-b^2}{a^2-\left(a+b\right)}.\frac{a-b}{a^2+\left(a+b\right)}\)
\(=\frac{\left(a^4-a^2-2ab-b^2\right).\left(a-b\right)}{a^4-\left(a+b\right)^2}=\frac{\left[a^4-\left(a+b\right)^2\right].\left(a-b\right)}{a^4-\left(a+b\right)^2}=a-b\)
b, Có \(P=a-b=1\)\(\Rightarrow a=1+b\)
\(a^3-b^3=7\Leftrightarrow\left(a^2+ab+b^2\right)\left(a-b\right)=7\)
\(\Rightarrow a^2+ab+b^2=7\)
\(\Leftrightarrow\left(1+b\right)^2+\left(1+b\right)b+b^2=7\)
\(\Leftrightarrow b^2+2b+1+b^2+b+b^2=7\)
\(\Leftrightarrow3b^2+3b-6=0\)
Bạn tự giải phương trình tìm b => a
Bài 2 :
\(a,y=\left(m+1\right)x-2m-5\) \(\Leftrightarrow\left(m+1\right)x-2m-5-y=0\)
\(\Leftrightarrow mx+x-2m-5-y=0\)\(\Leftrightarrow m\left(x-2\right)+x-y-5=0\)
Có y luôn qua điểm A cố định với A( x0 ; y0 ) \(\orbr{\begin{cases}x_0-2=0\\x_0-y_0-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x_0=2\\y_0=-3\end{cases}}\)
=> A( 2;-3)
Gọi H là chân đường vuông góc hạ từ O xuống d => \(OH\le OA\)
\(OH_{max}=OA\)khi \(H\equiv A\)\(\left(d\perp OA\right)\)
=> đường thẳng OA qua O( 0;0 ) và A( 2;-3 ) => \(y=-\frac{3}{2}x\)
\(\Rightarrow d\perp OA\)=> hệ số góc \(m.\) \(-\frac{3}{2}=-1\Rightarrow m=\frac{2}{3}\)
b, \(y=0\Rightarrow\left(m+1\right)x-2m-5=0\)\(\Rightarrow x=\frac{2m+5}{m+1}\)\(\Rightarrow A\left(\frac{2m+5}{m+1};0\right)\)
\(x=0\Rightarrow y=-2m-5\Rightarrow B\left(0;-2m-5\right)\)
\(\Rightarrow OA=\sqrt{\frac{2m+5}{m+1}};OB=\sqrt{-2m-5}\)
\(\Rightarrow\frac{1}{2}.OA.OB=\frac{3}{2}\Rightarrow OA.OB=3\)
\(\Rightarrow\left(OA.OB\right)^2=9\Rightarrow\frac{\left(2m+5\right)^2}{m+1}=9\)
\(\Rightarrow4m^2+20m+25-9m-9=\)
\(\Rightarrow4m^2+11m+16=0\)
Góc tạo bởi đường thẳng y=ax+b với trục Ox khi a>0 là:
A)1 góc nhọn B) 1 góc tù
C) 1 góc nhọn D)1 góc bẹt