Tìm GTNN của A=\(\frac{3x^2+17}{x^2+5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có 2 cách nhưng mình chỉ giải 1 cách thôi,không biết có đúng không nhé!(Cho phép mình đặt tên các đỉnh)
Kẻ BE//AD =>Tam giác BEC là tam giác vuông.Vì góc BCE = 45 độ
=> Góc CBE= 45 độ =>Tam giác BEC vuông cân.=> BE=EC=DC-DE=9-6=3.
Diện tích của hình thang là:(a+b)*h:2=(AB+CD)*BE:2=(6+9)*3:2=45:2=22.5(cm vuông)
Sửa đề: Chứng minh rằng không có các số a, b, c nào thỏa mãn cả 3 bất đẳng thức
|b - c| > |a|(*); |c - a| > |b|(**); |a - b| > |c|(***)
Ta dễ thấy a, b, c phải khác nhau từng đôi 1
Ta thấy rằng vai trò của a, b, c trong bài này là như nhau nên ta chỉ cần giải 4 trường hợp là
\(\left(a>0,b>0,c>0\right);\left(a< 0,b< 0,c< 0\right);\left(a>0,b>0,c< 0\right);\left(a< 0,b< 0,c>0\right)\)
Không mất tính tổng quát ta giả sử: |a| > |b| > |c|
Với \(a>0,b>0,c>0\)thì |b - c| > |a| là sai (1)
Với \(a< 0,b< 0,c< 0\) thì |b - c| > |a| là sai (2)
Với \(a>0,b>0,c< 0\)thì ta đặt \(c=-z\left(z>0\right)\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}b+z>a\\a-b>z\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}z>a-b\\z< a-b\end{cases}}\)(sai) (3)
Với \(a< 0;b< 0;c>0\)thì ta đặt \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\)
Thì bất đẳng thức (*), (**) ban đầu viết lại là:
\(\hept{\begin{cases}y+c>x\\x-y>c\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}c>x-y\\c< x-y\end{cases}}\)(sai) (4)
Từ (1), (2), (3), (4) ta suy ra điều phải chứng minh
mk góp thêm 1 cách nữa
Giả sử tồn tại 3 số a, b, c thỏa mãn cả 3 BĐT trên. Ta có:
\(\left|b-c\right|>\left|a\right|\)\(\Rightarrow\)\(\left(b-c\right)^2>a^2\)\(\Leftrightarrow\)\(b^2-2bc+c^2-a^2>0\)
\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(a-b+c\right)>0\)(1)
Tương tự \(\left|c-a\right|>\left|b\right|\)\(\Leftrightarrow\)\(-\left(a+b-c\right)\left(-a+b+c\right)>0\) (2)
và \(\left|a-b\right|>\left|c\right|\)\(\Leftrightarrow\)\(-\left(a-b+c\right)\left(-a+b+c\right)>0\) (3)
Nhân (1), (2) và (3) theo vế ta được \(-\left[\left(a+b-c\right)\left(a-b+c\right)\left(-a+b+c\right)\right]^2>0\) (vô lý)
Vậy ko tồn tại 3 số a, b, c thỏa mãn 3 BĐT đã cho.
\(A=\frac{3x^2+15+2}{x^2+5}=3+\frac{2}{x^2+5}\le3+\frac{2}{5}=\frac{17}{5}\)đẳng thức khi x=0
KL GTLN A=17/5
không có GTNN