Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(ABM\) và tam giác \(NDM\):
\(\widehat{BAM}=\widehat{DNM}\left(=90^o\right)\)
\(MB=MD\)
\(\widehat{AMB}=\widehat{NMD}\)
Suy ra \(\Delta ABM=\Delta NDM\) (cạnh huyền - góc nhọn)
b) \(\Delta ABM=\Delta NDM\) suy ra \(\widehat{ABM}=\widehat{NDM}\)
mà \(\widehat{ABM}=\widehat{EBM}\).
suy ra \(\widehat{NDM}=\widehat{EBM}\) suy ra tam giác \(EBD\) cân tại \(E\)
suy ra \(BE=DE\).
\(\Rightarrow ab=3a-3b\Leftrightarrow ab+3b=3a\)
\(\Leftrightarrow b\left(a+3\right)=3a\Rightarrow b=\dfrac{3a}{a+3}\left(a\ne-3\right)\)
\(\Rightarrow b=\dfrac{3\left(a+3\right)-9}{a+3}=3-\dfrac{9}{a+3}\)
Để b là số nguyên thì
a+3 phải là ước của 9
\(\Rightarrow a+3=\left\{-9;-1;1;9\right\}\Rightarrow a=\left\{-12;-4;-2;6\right\}\)
\(b=\left\{4;12;-6;2\right\}\)
xin lỗi còn thiếu trường hợp \(a+3=\pm3\) bạn bổ xung và tính nốt nhé
\(=\dfrac{\left(2^3\right)^3.\left(3^2\right)^4-2^8.\left(3^4\right)^2}{\left(2^4\right)^2.\left(3^4\right)^2+\left(2^2\right)^4.\left(3^3\right)^3}=\dfrac{2^9.3^8-2^8.3^8}{2^8.3^8+2^8.3^9}=\)
\(=\dfrac{2^8.3^8.\left(2-1\right)}{2^8.3^8.\left(1+3\right)}=\dfrac{1}{4}\)
a) Xét tam giác \(OIA\) và tam giác \(OIB\) có:
\(OA=OB\)
\(\widehat{AOI}=\widehat{BOI}\)
\(OI\) cạnh chung
suy ra \(\Delta OIA=\Delta OIB\) (c.g.c)
b) Xét tam giác \(OIN\) và tam giác \(OIM\):
\(\widehat{ION}=\widehat{IOM}\)
\(OI\) cạnh chung
\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)
suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)
\(\Rightarrow IN=IM\)
c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).
Xét tam giác \(INA\) và tam giác \(IMB\):
\(IA=IB\)
\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)
\(IN=IM\)
suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)
d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)
suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).
a) Xét tam giác \(AHD\) và tam giác \(AKD\):
\(\widehat{AHD}=\widehat{AKD}\left(=90^o\right)\)
\(AD\) cạnh chung
\(\widehat{HAD}=\widehat{KAD}\) (vì \(AD\) là tia phân giác góc \(A\) của tam giác \(ABC\))
Suy ra \(\Delta AHD=\Delta AKD\) (cạnh huyền - góc nhọn)
\(\Rightarrow AH=AK\).
b) \(\Delta AHD=\Delta AKD\) suy ra \(DH=DK\) suy ra \(D\) thuộc đường trung trực của \(HK\).
\(AH=AK\) suy ra \(A\) thuộc đường trung trực của \(HK\)
suy ra \(AD\) là đường trung trực của \(HK\).
c) Xét tam giác \(AKE\) và tam giác \(AHF\):
\(\widehat{A}\) chung
\(AH=AK\)
\(\widehat{AHF}=\widehat{AKE}\left(=90^o\right)\)
suy ra \(\Delta AKE=\Delta AHF\) (g.c.g)
suy ra \(AE=AF\)
Xét tam giác \(AEF\) có: \(\dfrac{AH}{AE}=\dfrac{AK}{AF}\) suy ra \(HK//EF\).
Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm
Chu vi tam giác sẽ là: 4 +8 +8 = 20cm
Đáp án C
Các bạn muốn giải đáp thắc mắc hoặc kèm thêm toán thì có thể liên hệ nhé
Do tam giác ABC cân AB =4cm, AC = 8cm => BC = 8cm
Chu vi tam giác sẽ là: 4 +8 +8 = 20cm
sos
1. D
2. D
3. B
4. A
5. C
6. D
7. B
8. C
9. D
10. A
11. C