Tính N
N-(6xy^2-5x)=(7+xy^2+5x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A\left(1\right)=B\left(-2\right)\Leftrightarrow12+2a+a^2=8-\left|2a+3\right|\left(-2\right)+a^2\)
\(\Leftrightarrow4+2a=2\left|2a+3\right|\)
đk a >= -2
\(\left[{}\begin{matrix}4a+6=4+2a\\4a+6=-2a-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-1\left(tm\right)\\a=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
a/ Ta có
\(AB\perp AC\left(gt\right)\)
\(HK\perp AC\left(gt\right)\)
=> AB//HK (cùng vuông góc với AC)
b/ Xét tg AKI có
\(AH\perp HI\) => AH là đường cao của tg AKI
HK=HI (gt) => AH là trung tuyến của tg AKI
=> tg AKI cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
c/ Ta có
tg AKI cân tại A \(\Rightarrow\widehat{AIK}=\widehat{AKI}\) (góc ở đáy tg cân)
AB//HK (cmt) \(\Rightarrow\widehat{BAK}=\widehat{AKI}\) (góc so le trong)
\(\Rightarrow\widehat{BAK}=\widehat{AIK}\) (cùng bằng góc \(\widehat{AKI}\) )
d/ Xét tg CKI có
\(CH\perp KI\) => CH là đường cao của tg CKI
HK=HI => CH là trung tuyến của tg CKI
=> tg CKI cân tại C (Tam giác có đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
Xét tg AIC và tg AKC có
tg AKI cân tại A (cmt) => AI=AK
tg CKI cân tại C (cmt) => CI=CK
AC chung
=> tg AIC = tg AKC (c.c.c)
4,35-(2,67-1,65)+(3,54-6,33)
= 4,35-2,67+1,65+3,54-6,33
=(4,35+1,65)-(2,67+6,33)+3,54
=6-9+3,54
=0,54
a/ Xét tg vuông AHI và tg vuông AKI có
AI chung
\(\widehat{BAI}=\widehat{CAI}\) (gt)
=> tg AHI = tg AKI (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => AH=AK
b/
I thuộc trung trực của BC nên I cahcs đều B và C => IB=IC
c/
Xét tg vuông BHI và tg vuông CKI có
IB=IC (cmt)
tg AHI = tg AKI (cmt) => IH=IK
=> tg BHI = tg CKI (Hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau) => BH=CK
Cho \(Q\left(x\right)=0\)
hay \(2ax-7=0\)
Vì \(x=3\) là nghiệm của đa thức \(Q\left(x\right)\)
\(Q\left(3\right)=2a.3-7=0\)
\(Q\left(3\right)=2a.3\) \(=0+7\)
\(Q\left(3\right)=2a.3\) \(=7\)
\(Q\left(3\right)=2a\) \(=\dfrac{7}{3}\)
\(Q\left(3\right)=\) \(a\) \(=\dfrac{7}{3}:2\)
\(Q\left(3\right)=\) \(a\) \(=\dfrac{7}{6}\)
Vậy \(a=\dfrac{7}{6}\)
Tl:......Thay x = 3 vào đa thức Q(x) ta có : Q(x)= 2.a.3-7=0 -> 2.a.3=0+7 ->2.a.3=7->2.a=7/3-> a= 7/3 : 2 -> a=7/6 . Vậy a= 7/6 thì đa thức Q(x) có nghiệm là x=3
\(3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y^2\)
\(\Leftrightarrow-A+B=5x^2y^3+x^3y^2\)
\(-6x^2y^3+C-3x^3y^2-D=2x^2y^3-7x^3y^2\)
\(\Leftrightarrow C-D=8x^2y^3-4x^3y^2\)
Do \(A\) và \(C\) đồng dạng nên \(A=-5x^2y^3,C=8x^2y^3\) suy ra \(B=x^3y^2,D=4x^3y^2\) hoặc \(A=-x^3y^2,C=-4x^3y^2\) suy ra \(B=5x^2y^3,D=-8x^2y^3\).
a, \(P\left(x\right)=-x^4+3x^3-6x^2+2x+\dfrac{1}{2}\)
\(Q\left(x\right)=5x^5-x^3+x^2-7x-\dfrac{1}{4}\)
b, Ta có \(P\left(x\right)+Q\left(x\right)=5x^5-x^4+2x^3-5x^2-5x+\dfrac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=-x^4+4x^3-7x^2+9x+\dfrac{3}{4}-5x^5\)
Gọi các số đó là: \(x_1;x_2;...;x_{100}\)
Giả dụ các số đó có thứ tự từ nhỏ đến lớn: \(x_1< x_2< ...< x_{100}\)
Ta có: \(x_1.x_2.x_{100}< 0\)
\(\Rightarrow x_1\left(-\right);x_2;x_{100}\left(+\right)\) hoặc \(x_1;x_2;x_{100}\left(-\right)\)
Trường hợp 1: \(x_1\left(-\right);x_2;x_{100}\left(+\right)\)
Do \(x_2;x_{100}\left(+\right)\) mà \(x_2< ...< x_{100}\)
\(\Rightarrow x_2;...;x_{100}\) đều là số dương
\(\Rightarrow x_2.x_3.x_4>0\) (Mâu thuẫn với đề.)
Trường hợp 2: \(x_1;x_2;x_{100}\left(+\right)\)
Do \(x_2< ...< x_{100}\)
\(\Rightarrow x_1;...;x_{100}\) đều là số âm
Vậy tất cả 100 số đó đều là số âm.
`N-(6xy^2-5x)=(7+xy^2+5x)`
`-> N = ( 7 + xy^2 + 5x )+( 6xy^2 - 5x )`
`-> N = 7 + xy^2 + 5x +6xy^2 - 5x`
`-> N = ( 5x - 5x ) + ( 6xy^2 + xy^2 ) + 7`
`-> N = 7xy^2 + 7`