cho hinh vuong có chu vi 28 cm độ dài cạnh hv là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3ⁿ⁺¹.(1 + 3²) + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.10 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 3ⁿ⁺¹.5.2 + 2.(2ⁿ⁺¹ + 2ⁿ⁺²)
= 2.(3ⁿ⁺¹.5 + 2ⁿ⁺¹ + 2ⁿ⁺²) ⋮ 2 (1)
A = (3ⁿ⁺¹ + 3ⁿ⁺³) + (2ⁿ⁺² + 2ⁿ⁺³)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².(1 + 2)
= 3.(3ⁿ + 3ⁿ⁺²) + 2ⁿ⁺².3
= 3.(3ⁿ + 3ⁿ⁺² + 2ⁿ⁺²) ⋮ 3 (2)
Từ (1) và (2) ⇒ A ⋮ 2 và A ⋮ 3
⇒ A ⋮ 6
\(12+5\left(x-3\right)⋮\left(x-3\right)\)
\(\Rightarrow12⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(12\right)=\left(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right)\)
Vì x>7 => x-3>4
\(\Rightarrow\left(x-3\right)\in\left\{6;12\right\}\)
\(\Rightarrow x\in\left\{9;15\right\}\)
[12 + 5(x - 3)] ⋮ (x - 3) khi 12 ⋮ (x - 3)
⇒ x - 3 ∈ Ư(12) = {-12; -6; -4; -3; -2;-1; 1; 2; 3; 4; 6; 12}
⇒ x ∈ {-9; -3; -1; 1; 2; 4; 5; 6; 7; 9; 15}
Mà x > 7
⇒ x = 9; x = 15
\(9^{100}và3^{200}=3^{200}và3^{200}\\ \Rightarrow3^{200}=3^{200}\\ \Rightarrow9^{100}=3^{200}.\\ 5^{23}và125^3=5^{23}và5^9\\ \Rightarrow5^{23}>5^9\\ \Rightarrow5^{23}>5^3.\)
9¹⁰⁰ = (3²)¹⁰⁰ = 3²⁰⁰
Vậy 9¹⁰⁰ = 3²⁰⁰
------------
125³ = (5³)³ = 5⁹
Do 23 > 9 nên 5²³ > 5⁹
Vậy 5²³ > 125³
Lời giải:
$S=3^1.3^2.3^3....3^{1998}=3^{1+2+3+...+1998}=3^{1997001}$
Ta thấy các ước của $S$ có dạng $3^m$ với $0\leq m\leq 1997001$ với $m$ là số tự nhiên.
Do đó $S\not\vdots 26$
\(A=1+5+5^2+...+5^{2022}\)
\(5A=5+5^2+5^3+...+5^{2023}\)
\(5A-A=5+5^2+5^3+...+5^{2023}-\left(1+5+5^2+...+5^{2022}\right)\)
\(4A=5^{2023}-1\)
\(A=\dfrac{5^{2023}-1}{4}\)
A = 1 + 5 + 5² + ... + 5²⁰²²
⇒ 5A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 4A = 5A - A
= (5 + 5² + 5³ + ... + 5²⁰²³) - (1 + 5 + 5² + ... + 5²⁰²²)
= 5²⁰²³ - 1
⇒ A = (5²⁰²³ - 1) : 4
Độ dài cạnh hình vuông là:
\(28:4=7\left(cm\right)\)
Đáp số: 7 cm
Độ dài cạnh hình vuông là:
\(28:4=7(cm)\)
Vậy độ dài cạnh hình vuông là \(7cm\).