K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Gọi tuổi của phuong là x tuổi của mẹ la y 

ta có : x*3=y

  • 2x+26=y+13
  • 2x-y=13-26
  • 2x-y=-13
  • 2x+13=y
  • 2x+13=3x

=)) x =13

Vậy tuổi của phuong là 13

27 tháng 2 2017

e nghĩ bằng 13 đấy !

28 tháng 2 2017

a/ \(P=\frac{\left(x^2+a\right)\left(1+a\right)a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

\(=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)

b/ Từ phân số rút gọn thì ta thấy P không phụ thuộc vào x và có nghĩa với mọi x.

Ta lại có \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy P không phụ thuộc vào x và có nghĩa với mọi x và a

28 tháng 2 2017

P khong phu thuoc vao x va co nghia voi x va a

28 tháng 2 2017

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}.\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}.\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n-1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2.\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

Vậy \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)

28 tháng 2 2017

\(\frac{1}{2\sqrt{1}}\)+\(\frac{1}{3\sqrt{2}}\)+...+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2

26 tháng 2 2017

9(2x + 1) = 4(x - 5)2

<=> 18x + 9 = 4(x2 - 10x + 25)

<=> 18x + 9 = 4x2 - 40x + 100

<=> 4x2 - 40x - 18x + 100 - 9 = 0

<=> 4x2 - 58x + 81 = 0

Từ đó tìm nghiệm rồi giải nốt pt

26 tháng 2 2017

Hình như mình sai ^^ tìm không ra nghiệm dương ^^

26 tháng 2 2017

Bạn tính toán cuối cùng nó ra M=(yz+2xz+2xy+2x2)2

x;y;z là các số tự nhiên => M là số chính phương

27 tháng 2 2017

Cảm ơn

26 tháng 2 2017

Áp dụng bất đẳng thức Bu-nhi-a-cop-xki cho 2 bộ số (x;y) và (3;2) ta có:

\(\left(3x+2y\right)^2\le\left(x^2+y^2\right)\left(9+4\right)\)<=>\(13^2\le\left(x^2+y^2\right).13\)<=>\(13\le x^2+y^2\)

=>min P=13 khi \(\frac{x}{3}=\frac{y}{2}\Leftrightarrow x=\frac{3y}{2}\) rồi bạn thế x vào 3x+2y=13 mà tìm ra x;y nhé :)