So sánh các phân số sau ( bằng cách hợp lí)
g) \(\frac{n}{n+3}\)Và \(\frac{n+1}{n+2}\)
h) \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) \(\frac{15}{16}=\frac{15.1010}{16.1010}=\frac{15150}{16160}=1-\frac{1010}{16160}\)
\(\frac{15151}{16161}=1-\frac{1010}{16161}\)
Vì \(16160< 16161\)\(\Rightarrow\frac{1}{16160}>\frac{1}{16161}\)
\(\Rightarrow\frac{1010}{16160}>\frac{1010}{16161}\)\(\Rightarrow1-\frac{1010}{16160}< 1-\frac{1010}{16161}\)
hay \(\frac{15}{16}< \frac{15151}{16161}\)
c)
\(\frac{19}{18}=1+\frac{1}{18}\)
\(\frac{2017}{2016}=1+\frac{1}{2016}\)
Vì \(\frac{1}{18}>\frac{1}{2016}\)
Vậy \(\frac{19}{18}>\frac{2017}{2016}\)
d)
\(\frac{133}{173}=\frac{130+3}{170+3}=\frac{13+0,3}{17+0,3}\)
Ta có :
\(\frac{a}{b}< \frac{a+x}{b+x}\forall a;b;x>0\)
Vậy \(\frac{13}{17}< \frac{133}{173}\)
a) \(\frac{8}{9}=1-\frac{1}{9}\)
\(\frac{108}{109}=1-\frac{1}{109}\)
Vì \(\frac{1}{9}>\frac{1}{109}\)
Nên \(1-\frac{1}{9}< 1-\frac{1}{109}\)
Vậy \(\frac{8}{9}< \frac{108}{109}\)
b)
\(\frac{97}{100}=\frac{97\cdot99}{100\cdot99}\)
\(\frac{98}{99}=\frac{98\cdot100}{99\cdot100}\)
\(\Rightarrow\frac{97}{100}< \frac{98}{99}\)
Giải:
O y x m n 75 độ 75 độ
Vì 2 tia Ox, Oy đối nhau nên góc nOx và góc nOy kề bù
=> Góc nOx + góc nOy = 180o
Góc nOx + 75o = 180o
=> Góc nOx = 180o - 75o = 105o
Ta có: Om và On thuộc 2 nửa mặt phẳng đối nhau có bờ là đường thẳng chứa tia Ox
=> Tia Ox nằm giữa 2 tia Om, On
=> Góc mOx + góc nOx = góc mOn
hay 75o + 105o = góm mOn
=> Góc mOn = 180o
=> 2 tia Om và On là 2 tia đối nhau (đpcm)
Để 5*4 chia hết cho 3 thì 5 + * + 4 chia hết cho 3
=> 9 + * chia hết cho 3
Mà * là chữ số nên 0 <= * <= 9
=> * thuộc {0 ; 3 ; 6 ; 9}
Vậy * thuộc {0 ; 3 ; 6 ; 9}.
Ta có :
5 + 4 = 9 \(⋮\) 3
Vậy để 5*4 chia hết cho 3 thì 8 chia hết cho 3 :
Vậy * = {0;3;6;9}
`Answer:`
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{31}+\frac{1}{32}\)
a) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}>\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}=\frac{1}{2}\)
\(\frac{1}{9}+...+\frac{1}{16}>8.\frac{1}{16}=\frac{1}{2}\)
\(\frac{1}{17}+\frac{1}{18}+...+\frac{1}{32}>16.\frac{1}{32}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{5}{2}\)
b) Ta thấy:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}< 3.\frac{1}{3}\)
\(\frac{1}{6}+...+\frac{1}{11}< 6.\frac{1}{6}\)
\(\frac{1}{12}+...+\frac{1}{23}< 12.\frac{1}{12}\)
\(\frac{1}{24}+...+\frac{1}{32}< 9.\frac{1}{24}\)
\(\Rightarrow S< \frac{1}{2}+1+1+1+\frac{9}{24}=\frac{31}{8}< \frac{9}{2}\)
h) Ta có: \(\frac{n+1}{n+2}=1-\frac{1}{n+2}\)
\(\frac{n+3}{n+4}=\frac{1}{n+4}\)
Vì \(n+2< n+4\)\(\Rightarrow\frac{1}{n+2}>\frac{1}{n+4}\)
\(\Rightarrow1-\frac{1}{n+2}< 1-\frac{1}{n+4}\)\(\Rightarrow\frac{n+1}{n+2}< \frac{n+3}{n+4}\)