K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017
a=2;b=1
3 tháng 3 2017

Thank you

2 tháng 3 2017

xet tam giac ABC co  AC^2 = BC^2 - AB^2 (py ta go) vi HB+HC=BC suy ra BC=16+9=25

xet tam giac AHC co AH^2 = AC^2 - HC^2 (1)

xet tam giac AHB co AH^2 = AB^2 - HB^2 = BC^2 - Ac^2 -HC^2 (2)

tu (1) va (2) suy ra AC^2 - HC^2 = BC^2 - AC^2 - HB^2 

suy ra 2AC^2 = BC^2 + HC^2 - HB^2 = 25^2 + 16^2 -9^2 =800 suy ra AC^2 =400 cm

Vi AH^2 = AC^2 - HC^2 = 400 - 16^2 = 144 suy ra AH=12cm

1 tháng 3 2017

Gọi số tuổi của em hiện nay la a (tuổi) (a thuộc N )

Khi đó tuổi anh sẽ là 2a

Theo bài ra ta có phương trình:

a+2a=15

3a=15

suy a=5 

Vậy tuổi em hiện nay la 5 tuổi , anh hiện nay la 5*2=10 tuổi

2 tháng 3 2017

Gọi số tuổi em là a với (a\(\in\)N)

Khi đó số tuổi của anh sẽ là 2a

theo bài toán ta có phương trình :

a + 2a = 15 

=> 3a = 15

vậy tuổi em là :

15 : 3 = 5

tuôi anh hiện nay là :

5 x 2 = 10 ( tuổi )

2 tháng 3 2017

Áp dụng bất đẳng thức Nesbitt với 3 số dương d,e,f ta có: \(\frac{d}{e+f}+\frac{e}{d+f}+\frac{f}{d+e}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi d=e=f

2 tháng 3 2017

Chứng minh rằng \(\frac{d}{e+f}+\frac{e}{d+f}+\frac{f}{d+e}\ge\frac{3}{2}\)\(\forall d,e,f>0\)

\(\Rightarrow\frac{d}{e+f}+1+\frac{e}{d+f}+1+\frac{f}{d+e}+1\ge\frac{9}{2}\)

\(\Rightarrow\frac{d+e+f}{e+f}+\frac{d+e+f}{d+f}+\frac{d+e+f}{d+e}\ge\frac{9}{2}\)

\(\Rightarrow\left(d+e+f\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge\frac{9}{2}\)

\(\Rightarrow2\left(d+e+f\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\)

\(\Rightarrow\left(e+f+d+f+d+e\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\)

Áp dụng bất đẳng thức Cauchy 

\(\Rightarrow\left(e+f+d+f+d+e\right)\left(\frac{1}{e+f}+\frac{1}{d+f}+\frac{1}{d+e}\right)\ge9\sqrt[3]{\left(e+f\right)\left(d+f\right)\left(d+e\right).\frac{1}{\left(e+f\right)\left(d+f\right)\left(d+e\right)}}=9\)

Vậy ta có đpcm 

Dấu " = " xảy ra khi \(e=d=f\) ( đpcm )