- tính tổng hệ số của \(\left(\left(x-y\right)^2\right)^7\)
- Khi đa thức f(x) chia x+2 dư -4, x-3 dư 21, chia (x+2)(x-3) được thương x2 -4, hạng tử tự do của f(x) là?
- Tìm x lớn nhất để \(\frac{x^3+x-2}{x^3-3x^2-2x-8}\)là số nguyên
- CM \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge2xy\)
- Quãng đường AB gồm 1 đoạn AC lên dốc, 1 đoạn ngang CD, 1 đoạn xuống dốc DB. Quãng đường dài tổng cộng 30km. 1 người đi từ A đến B rồi từ B về A mất 4h25'.Tisng quãng đường nằm ngang,biết vlên dốc=10km/h, vxuống dốc=20km/h, vngang=15km/h.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ

Ta có:
\(M=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{1}{16x}+\frac{4}{16y}+\frac{16}{16z}\)
\(\ge\frac{\left(1+2+4\right)^2}{16\left(x+y+z\right)}=\frac{49}{16}\)
Dấu bằng xảy ra khi
\(\frac{1}{16x}=\frac{2}{16y}=\frac{4}{16z}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)

(X+y)2=x2+y2+2xy
Lại có: 2xy <= x2+y2
=> (x+y)2 <= x2+y2+x2+y2=2.(x2+y2)=2.1=2
=> Giá trị lớn nhất của (x+y)2 là 2

Vận tốc dòng nước là: 750:15=50m/ph
Đổi: 2h30=150ph
3h15=195ph
Gọi vận tốc ca nô là v.
Ta có:
(V+50).150=(v-50).195
<=> v+50=1,3v-65
0,3v=115
=> v=115/0,3=1150/3 m/ph

Ta có:
\(\left(x^2+1\right)\left(y^2+4\right)\left(z^2+9\right)\ge2x.4y.6z=48xyz\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Thế vào A ta được:
\(A=\frac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=1\)

+ Kẻ DE // AM ( E thuộc BC )
+ Xét tam giác AMC có: DE // AM (c/v) => \(\frac{DC}{AC}\)= \(\frac{CE}{CM}\)( hệ quả định lí Ta-lét)
mà \(\frac{DC}{AC}\)= \(\frac{1}{2}\)( D là trung điểm của AC)
=> \(\frac{CE}{CM}\)=\(\frac{1}{2}\)(1)
+ Xét tm giác BDE có: DE / /MK ( DE // AM ) => \(\frac{BK}{KD}=\frac{BM}{ME}\)( định lí Ta-lét)
T/s: \(\frac{1}{2}=\frac{BM}{ME}\)(2)
+ Từ (1) và (2) => BM = \(\frac{1}{2}.\frac{1}{2}=\frac{1}{4}MC\)
=> \(\frac{MC}{MB}=4\)
jahBJF=86245HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH
Bài 4:
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\left(1\right)\)
Áp dụng BĐT AM-GM ta có:
\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\left(2\right)\)
Lại có: \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(3\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\ge2xy\)
Đẳng thức xảy ra khi \(x=y\)