(a-d)/(d+b)+(d-b)/(b+c)+(b-c)/(c+a)+(c-a)/(a+d) lớn hơn hoặc bằng 0
Biết a,b,c,d>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 4x + 5x - 20 = 0
(x2 - 4x)+(5x-20) = 0
x(x-4) + 5(x-4) = 0
(x-4).(x+5) = 0
x-4 = 0 hay x+5 = 0
x=4 hay x=-5
a) 8x^2 - 2x - 1
=8x2+2x-4x-1
=2x(4x+1)-(4x+1)
=(2x-1)(4x+1)
b) 6x^2 + 7xy + 2y^2
=4xy+6x2+4y2+3xy
=2x(2y+3x)+y(2y+3x)
=(2y+3x)(y+2x)
c) chịu
d)x^3 + x + 2
Ta thấy :x=-1 là nghiệm của đa thức (đây là dùng pp nhẩm nghiệm nhé)
=>đa thức có 1 hạng tử là x+1
=>(x+1)(x2-x+2) (nếu bn cần cách khác thì nhắn vs mk)
e) x^3 - 2x - 1
lí luận tương tự phần d
=>(x+1)(x2-x-1)
f) x^3 + 3x^2 - 4
lí luận tương tự phần d
=(x-1)(x2+4x+4)
=(x-1)(x+2)2
g) x^2 - 15x + 14
=x2-x-14x+14
=x(x-1)-14(x-1)
=(x-14)(x-1)
a) \(8x^2-2x-1=\left(4x^2-2x\right)+\left(4x^2-1\right)=2x\left(2x-1\right)+\left(2x-1\right)\left(2x+1\right)=\left(2x-1\right)\left(4x+1\right)\)
b) \(6x^2+7xy+2y^2=\left(6x^2+3xy\right)+\left(4xy+2y^2\right)=3x\left(2x+y\right)+2y\left(2x+y\right)=\left(2x+y\right)\left(3x+2y\right)\)
c) \(9x^2-9xy-4y^2=\left(9x^2-y^2\right)-\left(9xy+3y^2\right)=\left(3x-y\right)\left(3x+y\right)-3y\left(3x+y\right)=\left(3x+y\right)\left(3x-4y\right)\)
d) \(x^3+x+2=\left(x^3+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^2-x+2\right)\)
e) \(x^3-2x-1=\left(x^3-x\right)-\left(x+1\right)=x\left(x-1\right)\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(x^2-x-1\right)\)
f) \(x^3+3x^2-4=\left(x^3-1\right)+\left(3x^2-3\right)=\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)=\left(x-1\right)\left(x^2+x+1+3x+3\right)=\left(x-1\right)\left(x^2+4x+4\right)=\left(x-1\right)\left(x+2\right)^2\)
g) \(x^2-15x+14=x^2-x+14-14x=x\left(x-1\right)-14\left(x-1\right)=\left(x-1\right)\left(x-14\right)\)
Gọi V1, V2 lần lượt là thể tích của H2 và Cl2
H2 - 2e => 2H+
( lit ) 0,18 0,36
=>V H2(pư) = 0,18 lit
=> V H2(dư) = V1 - 0,18 (lit)
theo bài ra: V Cl2( sau pư) = 0,2V2
V HCl = 0,36 (lit)
Vậy ta có hệ :
V1 + V2 = 1,2 (1)
( V1 - 0,18 ) + 0,2V2 + 0,36 = 1,2 (2)
từ 1và 2 => V1 = 0,975 (l)
V2 = 0,125 (l)
=> %V1(trước) = 81,25%
%V1(sau) = 66,25%
Cái này hình như là hóa học
ta có H2 + Cl2 = 2HCl
ban đầu a(l) b(l)
phản ứng x(l) x(l) 2x(l)
dư a_x b-x
ta có V ban đầu = a+b =1,2 sau phản ứng v = a+b (vì trong bình kín nên v không đổi)
ta có sau phản ứng %HCl =2x / (a+b) = 0,3.mà a+b = 1,2 nên x= 0,18 %Cl
còn lại so với ban đầu = (b-x) / b = 0,2 nên b= o,225 suy ra a= 0,975. %H2 trong hh ban đầu = 0.975 / 1,2 =81,25% %H2
trong hh sau pư =0,795 / 1,2 =66,25
a)
ta có: 1/3x+y+1=0
=> 1/3x+y=-1
ta có : x^3+9x^2y+27xy^2+27y^3
=(x+3y)^3
= [1/3(1/3x+y)]^3
=1/27 . (-1)^3
=1/27 . (-1)
=-1/27
Ta có:
\(a^3+b^3+c^3=3abc=>a^3+b^3+c^3-3abc=0\)
\(=>\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3a^2b-3ab^2-3abc=0\)
\(=>\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)=0\)
\(=>\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Vì a3+b3+c3=3abc và a+b+c khác 0
=>\(a^2+b^2+c^2-ab-bc-ca=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm = 0 <=> chúng đều = 0
\(< =>\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c}\)
Vậy \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)
\(\)
Ta có ; \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ac\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\frac{a+b+c}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Vì \(a+b+c\ne0\) nên ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
a) Thay a = b = c vào biểu thức được : \(\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
b) Thay a = b = c vào P : \(P=\frac{2}{a}.\frac{2}{b}\frac{2}{c}=\frac{8}{abc}\)
Đề bài đúng : Chứng minh tích (n+1)(n+2)(n+3)(n+4) + 1 là số chính phương với n là số tự nhiên.
Ta có : \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)+1=\left[\left(n+1\right)\left(n+4\right)\right].\left[\left(n+2\right)\left(n+3\right)\right]+1\)
\(=\left(n^2+5n+4\right)\left(n^2+5n+6\right)+1=\left(n^2+5n+4\right)\left[\left(n^2+5n+4\right)+2\right]+1\)
\(=\left(n^2+5n+4\right)^2+2.\left(n^2+5n+4\right)+1=\left(n^2+5n+4+1\right)^2=\left(n^2+5n+5\right)^2\)
là một số chính phương.
a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:
+a khác b
+b khác c
+c khác a
\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)
Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)
\(bc=-\left(ab+ac\right)=-ab-ac\)
\(ac=-\left(ab+bc\right)=-ab-bc\)
Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)
\(c^2+2ab=\left(c-a\right)\left(c-b\right)\)
Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)
Cần chứng minh \(\frac{a-d}{b+d}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\ge0\)
Ta có \(\frac{a-d}{b+d}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}=\frac{\left(a+b\right)-\left(b+d\right)}{b+d}+\frac{\left(c+d\right)-\left(b+c\right)}{b+c}+\frac{\left(a+b\right)-\left(c+a\right)}{c+a}+\frac{\left(c+d\right)-\left(a+d\right)}{a+d}\)\(=\frac{a+b}{b+d}-1+\frac{c+d}{b+c}-1+\frac{a+b}{c+a}-1+\frac{c+d}{a+d}-1\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) được :
\(\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\ge\frac{4\left(a+b\right)}{a+b+c+d}+\frac{4\left(c+d\right)}{a+b+c+d}-4\)\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}-4=4-4=0\)
Suy ra ta có điều phải chứng minh.
Quá đúng, Lão HLBN này :D