K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

P= ( x+2)3+(x-2)3 - 2x.( x+ 12 )

=x3+6x2+12x+8+x3-6x2+12x-8-2x3-24x

=(x3+x3-2x3)+(6x2-6x2)+(12x+12x-24x)+(8-8)

=0.Vậy gt biểu thức ko phụ thuộc vào biến x

Q = ( x - 1)3- ( x + 1)+ 6 ( x + 1). ( x-1)

=x3-3x2+3x-1-x3-3x2-3x-1+6x2-6

=(x3-x3)-(-3x2-3x2+6x2)+(3x-3x)-1-1-6

=-8.Vậy....

11 tháng 7 2016

\(A=x^3+y^3=2xy\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(=2\left(x^2+y^2-xy\right)\)

\(\Rightarrow2\left(x^2+y^2-xy\right)=2xy\)

\(\Rightarrow x^2+y^2-xy=2xy\)

\(\Rightarrow x^2+y^2-2xy=xy\)

\(\Rightarrow\left(x-y\right)^2=xy\)

\(\left(x-y\right)^2\ge0\Rightarrow xy\ge0\)

Do đó GTNN của A là 0.

11 tháng 7 2016

A = x3 + y3

= (x + y).(x2 - xy + y2)

= 2.(x2 - xy + y2)

Mà A = 2xy

=> 2.(x2 - xy + y2) = 2xy

=> x2 - xy + y2 = xy

=> x2 - xy - xy + y2 = 0

=> x2 - 2xy + y2 = 0

=> (x - y)2 = 0

Mà (x - y)2 \(\ge\)0

=> GTNN của A là 0 <=> x - y = 0 <=> x = y

11 tháng 7 2016

Giả sử \(\sqrt{7}\)là số hữu tỉ.

Đặt \(\sqrt{7}=\frac{m}{n}\)( m ; n \(\in\) N*; ƯCLN (m;n ) = 1 )

\(\Rightarrow7=\frac{m^2}{n^2}\)

\(\Rightarrow m^2=7n^2\)

\(\Rightarrow m^2\)chia hết cho 7.

Mà 7 là  số nguyên tố nên \(m\)chia hết cho 7.

Đặt \(m=7k\left(k\in Z;k\ne0\right)\)thì có :

\(\left(7k\right)^2=7n^2\)

\(49k^2=7n^2\)

\(\Rightarrow7k^2=n^2\)

\(\Rightarrow n^2\)chia hết cho 7.

Mà 7 là số nguyên tố nên \(n\)chia hết cho 7.

Do đó cả m và n đều chia hết cho 7. Mà ƯCLN(m ; n ) = 1 \(\Rightarrow\)Vô lý.

Vậy \(\sqrt{7}\)là số vô tỉ.

11 tháng 7 2016

a)2(x-3)+12-4x

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

=(x2-22)(x-3)

=(x+2)(x-2)(x-3)

b)x3-4x2-12x+27

=x3-7x2+9x+3x2-21x+27

=x(x2-7x+9)+3(x2-7x+9)

=(x+3)(x2-7x+9)

11 tháng 7 2016

a)\(x^2\left(x-3\right)+12-4x\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-2^2\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

11 tháng 7 2016

?o?n th?ng f: ?o?n th?ng [B, C] ?o?n th?ng f_1: ?o?n th?ng [A, D] ?o?n th?ng g: ?o?n th?ng [A, B] ?o?n th?ng h: ?o?n th?ng [D, C] ?o?n th?ng i: ?o?n th?ng [A, C] ?o?n th?ng q: ?o?n th?ng [B, E] ?o?n th?ng r: ?o?n th?ng [F, D] ?o?n th?ng s: ?o?n th?ng [C, H] ?o?n th?ng t: ?o?n th?ng [H, B] ?o?n th?ng a: ?o?n th?ng [C, K] ?o?n th?ng b: ?o?n th?ng [D, K] B = (-4.96, 4.08) B = (-4.96, 4.08) B = (-4.96, 4.08) C = (-1, 4.12) C = (-1, 4.12) C = (-1, 4.12) A = (-9.14, -0.16) A = (-9.14, -0.16) A = (-9.14, -0.16) D = (-5.18, -0.12) D = (-5.18, -0.12) D = (-5.18, -0.12) ?i?m H: Giao ?i?m c?a l, n ?i?m H: Giao ?i?m c?a l, n ?i?m H: Giao ?i?m c?a l, n ?i?m F: Giao ?i?m c?a k, i ?i?m F: Giao ?i?m c?a k, i ?i?m F: Giao ?i?m c?a k, i ?i?m E: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a j, i ?i?m E: Giao ?i?m c?a j, i ?i?m K: Giao ?i?m c?a m, p ?i?m K: Giao ?i?m c?a m, p ?i?m K: Giao ?i?m c?a m, p

a. Ta thấy \(\Delta ABE=\Delta CDF\left(gh-gn\right)\). Vậy \(BE=DF\). Lại có BE//DF (Vì cùng vuông góc AC) nên BEFD là hình bình hành.

b. \(\Delta HCB\sim\Delta KCD\left(g-g\right)\Rightarrow\frac{HC}{CK}=\frac{CB}{CD}\Rightarrow HC.CD=CK.CB\)

c. Ta thấy \(\Delta ABE\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB.AH=AC.AE\)

Tương tự \(\Delta AFD\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AC.AF\)

Lại có AF = EC nên AE + AF = AE + EC = AC.

Vậy \(AB.AH+AD.AK=AC\left(AE+EC\right)=AC^2\)

11 tháng 7 2016

Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên. 
--------------------------------------... 
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên 

Ta có: (ax+b)(cx+d) = acx2 + (ad + bc)x + bd (1) 

a = c = ±1 , (1) trở thành: x2 + ±(b+d)x + bd 

Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m 

Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72 

Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0 

Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17 

Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27 

k mk nhá!!!ố~ồ

11 tháng 7 2016

Đáp án này trên yahoo nha :yoyo69:

 Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x^2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên.
--------------------------------------... 
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên 

Ta có: (ax+b)(cx+d) = acx^2 + (ad + bc)x + bd (1) 

a = c = ±1 , (1) trở thành: x^2 + ±(b+d)x + bd 

Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m 

Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72 

Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0 

Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17 

Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...

Tích nha :yoyo19::yoyo45:

11 tháng 7 2016

A B C D I K

Gọi K là điểm thuộc AD sao cho IK // AB // CD

Ta có : IK // AB => Góc BAI = góc IAK = góc AIK

=> Tam giác KAI cân tại K => AK = KI

Tương tự, ta cũng có tam giác DKI cân tại K => IK = AD 

=> K là trung điểm AD => IK là đường trung bình của hình thang ABCD

Do đó : AD = 2KI = \(2.\frac{AB+CD}{2}=AB+CD\)

11 tháng 7 2016

- Ân :'>

10 tháng 7 2016

Thay x = 0; y = -z = 1, thỏa mãn đề bài nhưng:

02016 + 12016 + (-1)2016 không bằng ( 0 + 1 - 1)2016

=> xem lại đề.