cho tứ giác MNPQ có N=M+10 độ, P=N+10 độ, Q=P+10 độ. Tính các góc M,N,P,Q
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= ( x+2)3+(x-2)3 - 2x.( x2 + 12 )
=x3+6x2+12x+8+x3-6x2+12x-8-2x3-24x
=(x3+x3-2x3)+(6x2-6x2)+(12x+12x-24x)+(8-8)
=0.Vậy gt biểu thức ko phụ thuộc vào biến x
Q = ( x - 1)3- ( x + 1)3 + 6 ( x + 1). ( x-1)
=x3-3x2+3x-1-x3-3x2-3x-1+6x2-6
=(x3-x3)-(-3x2-3x2+6x2)+(3x-3x)-1-1-6
=-8.Vậy....
\(A=x^3+y^3=2xy\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=2\left(x^2+y^2-xy\right)\)
\(\Rightarrow2\left(x^2+y^2-xy\right)=2xy\)
\(\Rightarrow x^2+y^2-xy=2xy\)
\(\Rightarrow x^2+y^2-2xy=xy\)
\(\Rightarrow\left(x-y\right)^2=xy\)
\(\left(x-y\right)^2\ge0\Rightarrow xy\ge0\)
Do đó GTNN của A là 0.
Giả sử \(\sqrt{7}\)là số hữu tỉ.
Đặt \(\sqrt{7}=\frac{m}{n}\)( m ; n \(\in\) N*; ƯCLN (m;n ) = 1 )
\(\Rightarrow7=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=7n^2\)
\(\Rightarrow m^2\)chia hết cho 7.
Mà 7 là số nguyên tố nên \(m\)chia hết cho 7.
Đặt \(m=7k\left(k\in Z;k\ne0\right)\)thì có :
\(\left(7k\right)^2=7n^2\)
\(49k^2=7n^2\)
\(\Rightarrow7k^2=n^2\)
\(\Rightarrow n^2\)chia hết cho 7.
Mà 7 là số nguyên tố nên \(n\)chia hết cho 7.
Do đó cả m và n đều chia hết cho 7. Mà ƯCLN(m ; n ) = 1 \(\Rightarrow\)Vô lý.
Vậy \(\sqrt{7}\)là số vô tỉ.
a)2(x-3)+12-4x
=x2(x-3)-4(x-3)
=(x2-4)(x-3)
=(x2-22)(x-3)
=(x+2)(x-2)(x-3)
b)x3-4x2-12x+27
=x3-7x2+9x+3x2-21x+27
=x(x2-7x+9)+3(x2-7x+9)
=(x+3)(x2-7x+9)
a)\(x^2\left(x-3\right)+12-4x\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x^2-2^2\right)\left(x-3\right)\)
\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)
a. Ta thấy \(\Delta ABE=\Delta CDF\left(gh-gn\right)\). Vậy \(BE=DF\). Lại có BE//DF (Vì cùng vuông góc AC) nên BEFD là hình bình hành.
b. \(\Delta HCB\sim\Delta KCD\left(g-g\right)\Rightarrow\frac{HC}{CK}=\frac{CB}{CD}\Rightarrow HC.CD=CK.CB\)
c. Ta thấy \(\Delta ABE\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB.AH=AC.AE\)
Tương tự \(\Delta AFD\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AC.AF\)
Lại có AF = EC nên AE + AF = AE + EC = AC.
Vậy \(AB.AH+AD.AK=AC\left(AE+EC\right)=AC^2\)
Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên.
--------------------------------------...
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên
Ta có: (ax+b)(cx+d) = acx2 + (ad + bc)x + bd (1)
a = c = ±1 , (1) trở thành: x2 + ±(b+d)x + bd
Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m
Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72
Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0
Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17
Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27
k mk nhá!!!ố~ồ
Đáp án này trên yahoo nha
Cho m là số nguyên nhỏ hơn 30. Có bao nhiêu giá trị của m để đa thức x^2 + mx + 72 là tích của 2 đa thức bậc nhất là số nguyên với hệ số là số nguyên.
--------------------------------------...
Gọi 2 đa thức bậc nhất đó là ax+b và cx+d với a, b, c, d nguyên
Ta có: (ax+b)(cx+d) = acx^2 + (ad + bc)x + bd (1)
a = c = ±1 , (1) trở thành: x^2 + ±(b+d)x + bd
Đồng nhất 1 với đa thức đề cho, ta có: bd = 72 và ±(b+d) = m
Các ước nguyên của 72 là : ± 1, ± 2 , ± 3, ± 4, ±6, ±8, ±9, ±12, ±18, ±24 , ±36, ± 72
Các bộ số (b,d) là (±1,±72) , (±2,±36) , (±3, ±24) , (±4,±18) , (±6, ±12) , (±8,±9) bạn nhớ là b và d cùng dấu nhé vì tích của chúng >0
Từ đây có thể tìm thấy có 10 số nguyên m nhỏ hơn 30 thỏa m = ±(b+d) với bd = 72 là: -73, -38, ±27 , ±22 , ±18 , ±17
Nếu bài hỏi số nguyên dương thì chỉ có 4 số thôi : 17, 18, 22, 27
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~...
Tích nha
Gọi K là điểm thuộc AD sao cho IK // AB // CD
Ta có : IK // AB => Góc BAI = góc IAK = góc AIK
=> Tam giác KAI cân tại K => AK = KI
Tương tự, ta cũng có tam giác DKI cân tại K => IK = AD
=> K là trung điểm AD => IK là đường trung bình của hình thang ABCD
Do đó : AD = 2KI = \(2.\frac{AB+CD}{2}=AB+CD\)
Thay x = 0; y = -z = 1, thỏa mãn đề bài nhưng:
02016 + 12016 + (-1)2016 không bằng ( 0 + 1 - 1)2016
=> xem lại đề.