Tìm GTNN,GTLN (nếu có) của:
x^2 - 4xy +5y^2 +10x -22y +28.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh đẳng thức:
1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải
2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp
3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b3 =vp
4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp
5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp
6) (a+b)3 =(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp
7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b3 =a3-3a2b+3ab2-b3=vp
\(M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+1\)
\(=1\)
\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y-2\right)+2\)
Ta có : \(x+y-2=0\Rightarrow x+2=-y\)
\(\Rightarrow N=-x^2y-xy^2+2xy+2\)
\(N=-xy\left(x+y-2\right)+2=2\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3=3\)
= -2( x2 +2x/2 +1/4) +5 + 1/2
= -2(x+1/2)2 + 5,5
GTLN = 5,5
mk làm tắt giỏi toán moi hieu
\(-2x^2+x+5=-2\left(x^2-\frac{x}{2}\right)+5=-2\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}\right)+\frac{1}{8}+5=-2\left(x-\frac{1}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\)Do đó Max = \(\frac{41}{8}\Leftrightarrow x=\frac{1}{4}\)
Đặt \(A=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+5y^2-22y+28\)
\(=x^2-x\left(4y-10\right)+5y^2-22y+28\)
\(=x^2-2.x.\frac{4y-10}{2}+\left(\frac{4y-10}{2}\right)^2+5y^2-22y-\left(\frac{4y-10}{2}\right)^2+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-\frac{16y^2-80y+100}{4}+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+5y^2-22y-4y^2+20y-25+28\)
\(=\left(x-\frac{4y-10}{2}\right)^2+y^2-2y+3=\left(x-\frac{4y-10}{2}\right)^2+y^2-2.y.1+1^2+2\)
\(=\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\)
Vì \(\left(x-\frac{4y-10}{2}\right)^2\ge0;\left(y-1\right)^2\ge0=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2\ge0\)
\(=>\left(x-\frac{4y-10}{2}\right)^2+\left(y-1\right)^2+2\ge2\) (với mọi x,y)
Dấu "=" xảy ra \(< =>\hept{\begin{cases}\left(x-\frac{4y-10}{2}\right)^2=0\\\left(y-1\right)^2=0\end{cases}}< =>\hept{\begin{cases}x-\frac{4y-10}{2}=0\\y=1\end{cases}}< =>\hept{\begin{cases}x-\frac{4-10}{2}=0\\y=1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy MInA=2 khi x=-3;y=1
Amin=2