2345677897867564534233454657687x2345678909876543456789098765430x987645678922x1=...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= x3 + 33 -x(x2 -1) -27 =0 ( tổng các lập phuong)
x =0
CX100%
Ta có : \(B=x^4-4x^3+9x^2-20x+22=\left(x^4-4x^3+4x^2\right)+\left(5x^2-20x+20\right)+2\)
\(=x^2\left(x^2-4x+4\right)+5\left(x^2-4x+4\right)+2=x^2\left(x-2\right)^2+5\left(x-2\right)^2+2\)
\(=\left(x-2\right)^2\left(x^2+5\right)+2\ge2\). Dấu đẳng thức xảy ra khi x = 2
Vậy Min B = 2 <=> x = 2
B=x4-4x3+9x2-20x+22
=(x-2)4+4(x-2)3+9(x-2)2+2
Ta thấy:
\(\hept{\begin{cases}\left(x-2\right)^4\\4\left(x-2\right)^3\\9\left(x-2\right)^2\end{cases}}\ge0\)
\(\Rightarrow\left(x-2\right)^4+4\left(x-2\right)^3+9\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^4+4\left(x-2\right)^3+9\left(x-2\right)^2+2\ge0+2=2\)
\(\Rightarrow B\ge2\)
Dấu = khi (x-2)4=4(x-2)3=9(x-2)2=0 =>x=2
Vậy Bmin=2 <=>x=2
\(a+b=1\Rightarrow\left(a+b\right)^2=1\Rightarrow a^2+b^2+2ab=1\Rightarrow a^2+b^2=1-2ab.\)
\(a+b=1\Rightarrow\left(a+b\right)^3=1\Rightarrow a^3+b^3+3ab\left(a+b\right)=1\Rightarrow a^3+b^3=1-3ab\)
\(M=2\left(a^3+b^3\right)-3\left(a^2+b^2\right)=2\left(1-3ab\right)-3\left(1-2ab\right)=2-6ab-3+6ab=-1.\)
Vậy, M = -1
a.) \(A=x^2+y^2+1+2xy+2x+2y=\left(x+y+1\right)^2.\)
b.) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2=u^2+2u+1+2\left(u+1\right)\left(v+1\right)+v^2+2v+1\)
\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
Giả sử số tự nhiên a chia cho 7 dư 3. CMR a chia cho 7 dư 2
\(A=-2x^2+x-5=-2\left(x^2-\frac{x}{2}\right)-5=-2\left(x^2-2.x.\frac{1}{4}+\frac{1}{16}\right)+\frac{1}{8}-5=-2\left(x-\frac{1}{4}\right)^2-\frac{39}{8}\le-\frac{39}{8}\)Vậy Max A = \(-\frac{39}{8}\Leftrightarrow x=\frac{1}{4}\)
Gọi 3 STN liên tiếp là a;a+1;a+2 Ta có tổng là : a+a+1+a+2=3a+3=3(a+1) số này chia hết cho 3. Tương Tự Gọi 4 STN liên tiếp là a;a+1;a+2;a+3 Ta có: 4a+4=4(a+1) chia hết cho 4
Giả sử ABCD là một hình thang vuông, góc A = góc D = 900 (ở đây mk chỉ xét 1 TH đáy nhỏ AB,đáy lớn CD,TH còn lại t.tự)
=>tam giác ABD và tam giác ADC vuông tại A và D
Xét tam giác ABD vuông tại A: \(BD^2=AB^2+AD^2\) (đ/l Pytago)
Xét tam giác ADC vuông tại D : \(AC^2=AD^2+CD^2\) (đ/l Pytago)
\(=>AC^2-BD^2=AD^2+CD^2-\left(AB^2+AD^2\right)=CD^2-AB^2=\left(CD-AB\right).\left(CD+AB\right)\)
Vì \(CD-AB=b;CD+AB=a\)
\(=>AC^2-BC^2=a.b\)
Vậy...........................
c/m bieu thuc k phu thuoc vao x,tuc la bien đoi để b/t k còn x
bài này dễ nhung dai, mk lam c)
= (x-1 -x -1)(x2 -2x +1 +x2 -1 +x2 +2x +1) +6(x2-1)=
= -2(3x2 +1) +6x2 - 6= -6xx -2 +6x2 -6 = -8 (k phụ thuộc vào x)(dpcm)
Dở hơi à ???