x(x+y)-5x-5y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔOAD có OE/OA=OF/OD
nên EF//AD và EF=AD/2=BC/2
Xét ΔADC và ΔBCD có
AD=BC
DC chung
AC=BD
DO đó: ΔADC=ΔBCD
=>góc ODC=góc OCD=60 đọ
=>ΔODC đều
mà CF là trung tuyến
nên CF vuông góc với BD
ΔBFC vuông tại F
mà FG là trung tuyến
nên FG=BC/2
Xét ΔOAB có góc OBA=góc OAB và góc AOB=60 độ
nên ΔOAB đều
mà BE là trung tuyến
nên BE vuông góc với CE
ΔBEC vuông tại E
mà EG là trung tuyến
nên EG=BC/2
=>EG=EF=FG
=>ΔEFG đều
Ta có : \(\left(x-3\right)^2+x^4=-y^2+6y-4\Leftrightarrow\left(x-3\right)^2+x^4=-\left(y^2-6y+9\right)+5\)
\(\Leftrightarrow\left(x-3\right)^2+x^4+\left(y-3\right)^2=5\)(1)
Từ (1) ta suy ra được : \(x^4\le5\Rightarrow-1\le x\le1\)( Vì \(x\in Z\))
Nhận xét , nếu \(x\le0\Rightarrow\left(y-3\right)^2=5-\left[\left(x-3\right)^2+x^4\right]< 0\) (vô lí)
Vậy x = 1. Suy ra \(\left(y-3\right)^2=0\Leftrightarrow y=3\)
Kết luận : Tập nghiệm của phương trình : (x;y) = (1;3)
Ta chia thành 2 trường hợp :
a)y^2+y=x^4+x^3+x^2+x=0 (1)
...(1)<=>y(y+1)=x(x^3+x^2+x+1)=0
...Pt này có 4 nghiệm sau
...x1=0; y1=0
...x2=0; y2= -1
...x3= -1; y3=0
...x4= -1; y4= -1
b)y^2+y=x^4+x^3+x^2+x (# 0) (2)
...ĐK để 2 vế khác 0 là x và y đều phải khác 0 và -1.Với ĐK đó thì
...(2)<=>y(y+1)=(x^2)(x^2+x+1+1/x)
...Đến đây lại chia 2 th :
...+{y=x^2
.....{x+1+1/x=1 (3)
.....(3) vô nghiệm =>th này vô nghiệm
...+{y+1=x^2
.....{x+1+1/x= -1
....=>x= -1; y=0 (theo ĐK ở trên nghiệm này phải loại)
...Vậy khi y^2+y=x^4+x^3+x^2+x # 0 thì pt vô nghiệm
Tóm lại pt đã cho có 4 nghiệm
x1=0; y1=0
x2=0; y2= -1
x3= -1; y3=0
x4= -1; y4= -1
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
câu 2:<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
1. \(A=x^2+12x+27=\left(x^2+12x+36\right)-9=\left(x+6\right)^2-9\ge-9\)
Vậy Min A = -9 <=> x = -6
2. \(B=2x-x^2-2=-\left(x^2-2x+1\right)-2+1=-\left(x-1\right)^2-1\le-1\)
Vậy Max B = -1 <=> x = 1
Nếu tìm x,y thì thiếu đề
Nếu phân tích thánh nhân tử thì đúng đề:
x(x+y)-5x-5y
=x(x+y)-(5x+5y)
=x(x+y)-5(x+y)
=(x-5)(x+y)
x(x+y)-5(x+y)
(x+y)(x-5)
k cho mk nhé! thank you!!!!!!!!!