K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2023

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

25 tháng 7 2023

Để chứng minh bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2, ta sẽ chứng minh từng phần.

Phần 1: Chứng minh 1 < a/b+c+b/c+a+c/a+b

Ta có:
a/b + b/c + c/a > 3√(a/b * b/c * c/a) = 3√(abc/(abc)) = 3

Vậy ta có: a/b + b/c + c/a + b/a + c/b + a/c > 3 + 1 + 1 = 5

Phần 2: Chứng minh a/b+c+b/c+a+c/a+b < 2

Ta có:
a/b + b/c + c/a < a/b + b/a + b/c + c/b = (a+b)/(b+c) + (b+c)/(a+b)

Áp dụng bất đẳng thức AM-GM, ta có:
(a+b)/(b+c) + (b+c)/(a+b) ≥ 2√[(a+b)/(b+c) * (b+c)/(a+b)] = 2

Do đó ta có: a/b+c+b/c+a+c/a+b < 2

Từ đó, ta suy ra bất đẳng thức 1 < a/b+c+b/c+a+c/a+b < 2.

25 tháng 7 2023

Ai giúp em với ạ

25 tháng 7 2023

Ta có tam giác ABC vuông tại A nên đường cao AH cũng là đường trung tuyến của tam giác ABC. Vậy ta có AH = HD.

Vì D là trung điểm của BC nên BD = CD.

Vì góc DE vuông góc với AC tại E nên tam giác ADE vuông góc tại E.

Vì F là điểm đối xứng của E qua D nên tam giác ADF cũng tại D.

Ta có:
- Tam giác ADE vuông tại E và tam giác ADF vuông tại D có cạnh chung AD.
- Tam giác ADE và tam giác ADF có cạnh AD bằng nhau (vì F là điểm đối xứng của E qua D).

Vậy tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.

Do đó, ta có AE = AF và DE = DF.

Vì M là trung điểm của HC nên ta có HM = MC.

Vì FM là đường trung tuyến của tam giác HAC nên ta có FM = \(\frac{1}{2}\)AC.

Ta cần chứng minh FM vuông góc với AM.

Ta có:
- Tam giác ADE và tam giác ADF là hai tam giác cân có cạnh chung AD.
- AE = AF và DE = DF.

Do đó, tam giác ADE và tam giác ADF là hai tam giác đồng dạng (theo nguyên tắc đồng dạng cận-cạnh-cạnh).

Do đó, ta có \(\frac{AE}{DE} = \frac{AF}{DF}\).

Vì AE = AF và DE = DF nên ta có \(\frac{AE}{DE} = \frac{AF}{DF} = 1\).

Vậy tam giác ADE và tam giác ADF là hai tam giác đồng dạng cân.

Do đó, ta có góc EAD = góc FAD và góc AED = góc AFD.

Vì góc EAD + góc AED = 90° (do tam giác ADE vuông góc tại E) nên góc FAD + góc AFD = 90°.

Do đó, ta có góc FAM = 90°.

Do đó, FM vuông góc với AM.

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ            ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

   
0
Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:                 a) OA=OB , OC=OD                 b) EO là đường trung trực của hai đáy hình thang ABCD.     Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ            ...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD có AB//CD, O là giao điểm của hai đường chéo, E là giao điểm của hai đường thẳng chứa cạnh bên AD và BC. Chứng minh:

                a) OA=OB , OC=OD

                b) EO là đường trung trực của hai đáy hình thang ABCD. 

   Bài 2: Cho hình thang ABCD (AD//BC, AD>BC) có đường chéo AC vuông góc với cạnh bên CD, AC là tia phân giác góc BAD và góc D=60 độ

                a) Chứng minh ABCD là hình thang cân

                 b) Tính độ dài cạnh AD, biết chu vi hình thang bằng 20cm.

     Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD=AE

                  a) Tứ giác BDEC là hình gì ? Vì sao?

                  b) Các điểm D,E ở vị trí nào thì BD=DE=EC?

             Mình đang cần gấp. Giúp mình nhé cảm ơn các bạn

 

0
24 tháng 7 2023

\(\left(3x-2y\right)^2+4\left(3x-2y\right)+4\\ =\left(3x-2y\right)^2+2.2\left(3x-2y\right)+2^2\\ =\left(3x-2y+2\right)^2\)

Áp dụng HĐT số 1 : \(A^2+2AB+B^2=\left(A+B\right)^2\)

Bài 1:

 

loading...

Ta có: AD=BC=3cm (t/c hthang)

Vì AB//CD(gt) nên \(\widehat{ABD}=\widehat{BDC}\left(SLT\right)\)

Mà \(\widehat{ADC}=\widehat{BDC}\) (do BD là tia pgiac góc D)

=>∠ABD=∠BDC 

=>∆ABD cân tại A

=>AD=BC=3cm

Vì ∆DBC vuông tại B

nên ∠BDC+∠C=90o

Mà ∠ADC=∠C (do ABCD là hình thang cân)

và ∠BDC=1/2 ∠ADC

=> ∠BCD=1/2∠C

Khi đó: ∠C+1/2∠C=90o=>∠C=60o

- Kẻ từ B 1 đường thẳng // AD cắt CD tại E

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

Mà ∠BEC=∠ADC(đồng vị)

=>∠BEC=∠C

=>∆BEC cân tại B có ∠C=60o

=>∆BEC là ∆ cả cân cả đều

=> EC=BC=3cm

Ta có: CD = CE + ED = 3 + 3 = 6(cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)

Bài 2:

loading...

Ta có: ∆ABC là ∆ cân tại A(gt)

=>∠ABC=∠ACB

+Ta có BD là tia pgiac của ∠ABC

=>∠B1=∠B2=1/2∠ABC

+Ta có CE là tia pgiac ∠ACB

=>C1=C2=1/2∠ACB

Xét 

AEC và ΔADB có:

+∠A chung

+AB=AC

+C1=B1

=> ΔAEC = ΔADB

=> AE = AD

=>BCDE là hình thang cân

b) Ta có ∠ACB=∠ABC=50o(do BCDE là hình thang cân)

Ta có: ED//BC

\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{AED}\\\widehat{ACB}=\widehat{ADE}\end{matrix}\right.=50^o}\) (SLT)

Mà ∠DEB=∠EDC

Ta có:

+∠DEB+∠AED=180o (kề bù)

=>50o+∠AED=180o

=>∠AED=180o-50o=130o

=>∠AED=∠ADE=130o

24 tháng 7 2023

Bài 3:

P = \(\dfrac{1^2}{2^2-1}\)\(\dfrac{3^2}{4^2-1}\).\(\dfrac{5^2}{6^2-1}\).....\(\dfrac{2023^2}{2024^2-1}\) 

P = \(\dfrac{1}{\left(2-1\right).\left(2+1\right)}\).\(\dfrac{3^2}{\left(4-1\right).\left(4+1\right)}\)....\(\dfrac{2023^2}{\left(2024-1\right).\left(2024+1\right)}\)

P = \(\dfrac{1}{1.3}\).\(\dfrac{3^2}{3.5}\).\(\dfrac{5^2}{5.7}\).\(\dfrac{7^2}{7.9}\)......\(\dfrac{2021^2}{2021.2023}\).\(\dfrac{2023^2}{2023.2025}\)

P = \(\dfrac{1}{2025}\)

 

23 tháng 7 2023

Để xác định các hệ số a, b, c, ta cần giải phương trình sau: (a + by + cy^2)(y + 3) = y^3 + 2y^2 - 3y Mở ngoặc và sắp xếp các thành phần theo bậc của y, ta có: ay^3 + (3a + by^2) + (3b + cy)y + 3c = y^3 + 2y^2 - 3y So sánh các hệ số của các bậc của y, ta có hệ phương trình sau: a = 1 3a + b = 2 3b + c = -3 3c = 0 Từ hệ phương trình trên, ta có: a = 1 b = 2 - 3a = 2 - 3(1) = -1 c = -3 - 3b = -3 - 3(-1) = 0 Vậy, các hệ số a, b, c là: a = 1, b = -1, c = 0.