Cho\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
a) Tìm ĐKXĐ và rút gọn
b)Cm P<\(\frac{1}{3}\) với \(x\ge0;x\ne1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác \(BGA\)vuông tại \(G\):
\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)
Xét tam giác \(ABE\)vuông tại \(A\):
\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)
Từ (1) và (2) suy ra \(BC^2+AC^2=30\)
mà \(BC^2=AC^2+6\)
suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).
\(AB^2=BH.BC=HB.\left(HB+HC\right)=HB^2+15HB\)
\(\Leftrightarrow HB^2+15HB=16\Leftrightarrow HB=1\left(cm\right)\)
\(AB^2=BH.BC=\frac{1}{5}BC.BC\)
\(\Rightarrow BC=\sqrt{5AB^2}=10\left(cm\right)\)
Ko đăng linh tinh lên diễn đàn
Đây ko phải là toán
Đề có đoạn sai mình sửa nhé
Ta có: \(a+b+c=\frac{1}{abc}\Rightarrow abc\left(a+b+c\right)=1\)
Lại có: \(1+b^2c^2=abc\left(a+b+c\right)+b^2c^2=bc\left(a^2+ab+ca+bc\right)=bc\left(a+b\right)\left(a+c\right)\)
Tương tự: \(\hept{\begin{cases}1+c^2a^2=ca\left(b+c\right)\left(a+b\right)\\1+a^2b^2=ab\left(c+a\right)\left(b+c\right)\end{cases}}\)
Khi đó: \(P=\sqrt{\frac{\left(1+b^2c^2\right)\left(1+c^2a^2\right)}{c^2\left(1+a^2b^2\right)}}=\sqrt{\frac{bc\left(a+b\right)\left(a+c\right)\cdot ca\left(b+c\right)\left(b+a\right)}{abc^2\left(c+a\right)\left(c+b\right)}}\)
\(=\sqrt{\left(a+b\right)^2}=\left|a+b\right|=a+b\) vì \(a,b\ge0\)
\(ĐKXĐ:x\ne1;x\ge0\)
\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)
\(P=\frac{x+2+\sqrt{x}+1\left(x-1\right)-\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)\left(x-1\right)}\)
\(P=\frac{x+2+x\sqrt{x}+x-\sqrt{x}-1-x\sqrt{x}-x-x-\sqrt{x}-\sqrt{x}-1}{\left(x+\sqrt{x}+1\right)\left(x-1\right)}\)
\(P=\frac{-3\sqrt{x}}{x\sqrt{x}-1}\)