Tìm x:
(3 - x) \(⋮\)x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 2002k . 2005k+1 chia hết cho 2, 5 và 10 thì phải có chữ số tận cùng là 0
Ta có : 2002k . 2005k+1 = 2002k . 2005k . 2005 = (2002 . 2005)k . 2005 = (.....0)k . 2005 = .....0 . 2005 = ........0 \(⋮\)2 , 5 và 10
Vậy 2002k . 2005k+1 chia hết cho 2 , 5 và 10
\(2002^k\cdot2005^{k+1}\)
\(=2002^k\cdot2005^k\cdot2005\)
\(=\left(2002\cdot2005\right)^k\cdot2005\)
\(=4014010^k\cdot2005\)
Vì 4 014 010k là 1 số chẵn, mà 2005 nhân với 1 số chẵn được 1 số có tận cùng là 0.
Vì các số có tận cùng là 0 luôn chia hết cho 2, 5 và 10.
Vậy ...........
=))
\(\frac{7\cdot11\cdot13\cdot41-1001}{13013+27027}\)
= \(\frac{41-1}{13+27}\)
=\(\frac{40}{40}\)
=\(1\)
Để \(\frac{63}{3n+1}\) rút gọn được thì 63 và 3n + 1 phải có ước chung
Có \(63=3^2.7\) nên 3n + 1 sẽ có ước là 3 hoặc 7.
Vì 3n+1 không thể chia hết cho 3 với n là số tự nhiên nên 3n+1 sẽ có ước là 7.
Như vậy: \(3n+1=7k\left(k\in Z\right)\)
\(\Leftrightarrow3n=7k-1\)
\(\Leftrightarrow n=\frac{7k-1}{3}\)
\(\Leftrightarrow n=\frac{6k+k-1}{3}\)
\(\Leftrightarrow n=2k+\frac{k-1}{3}\)
Vậy để n là số tự nhiên thì \(\frac{k-1}{3}\in N\) hay k = 3a+1. Thay vào biểu thức n ta có:
\(n=\frac{7k-1}{3}=\frac{7\left(3a+1\right)-1}{3}=7a+2\)
Vậy n = 7a+2 thì thỏa mãn đề bài.
P/s: không biết đúng hay không thôi nhé
Ta có dạng tổng quát:
\(abcabc:1001=abc\)
\(\Rightarrow a4b5c3:1001=a4b=5c3\)
\(\Rightarrow abc=543\)
\(\Rightarrow a=5;b=4;c=3\)
Với x = 1
=> 3 - 1 = 2 \(⋮\)1 ( nhận )
Với x = 2
=> 3 - 2 = 1 không chia hết cho 2 ( loại )
Với x = 3
=> 3 - 3 = 0 \(⋮3\) ( nhận )
vậy x chỉ có thể là 1 hoặc 3 thì 3 - x sẽ chia hết cho x