1) chứng minh rằng
Nếu abcd ( số tự nhiên ) ⋮ 101 thì ab-cd ⋮ 101
2) cho m + 4n ⋮ 13 . Chứng tỏ 10m + n ⋮ 13
3) cho 6a+11b ⋮ 31 . Chứng minh a + 7b ⋮ 31
4) 2a + 3b ⋮ 7 chứng minh 8+5b ⋮ 7
mọi giúp em với huhuhuhu
mai em nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg SAD có
SM=DM; SN=AN => MN là đường trung bình của tg SAD
=> MN//AD
Mà AD//BC (cạnh đối hbh)
=> MN//BC mà \(BC\in\left(SBC\right)\) => MN//(SBC)
C/m tương tự ta cũng có NP//(SCD)
b/
Ta có
NP//(SCD) (cmt) (1)
Xét tg SBD có
SP=BP (gt)
OB=OD (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> PO là đường trung bình của tg SBD
=> PO//SD mà \(SD\in\left(SCD\right)\) => PO//(SCD) (2)
Từ (1) và (2) => (ONP)//(SCD)
C/m tương tự ta cũng có (OMN)//(SBC)
c/
Trong (ABCD) , qua O dựng đường thẳng // AD cắt AB và CD lần lượt tại H và K Ta có
MN//AD (cmt)
=> KH//MN
\(O\in\left(OMN\right);O\in KH\)
\(\Rightarrow KH\in\left(OMN\right)\) mà \(H\in AB;K\in CD\)
=>K; H là giao của (OMN) với CD và AB
d/
Ta có
KH//AD
AB//CD => AH//DK
=> AHKD là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AD=HK
Ta có
MN là đường trung bình của tg SAD (cmt)
\(\Rightarrow MN=\dfrac{AD}{2}\) mà AD=HK (cmt)
\(\Rightarrow MN=\dfrac{HK}{2}\Rightarrow\dfrac{MN}{HK}=\dfrac{1}{2}\)
a,A = -5 + (-10) + (-15) + (-20) +...+ (-100)
A = - (5 + 10 + 15 + 20 + ...+ 100)
Xét dãy số 5; 10; 15; 20;...;100 Dãy số trên là dãy số cách đều với khoảng cách là:
10 - 5 = 5
số số hạng của dãy số trên là:
(100 - 5): 5 + 1 = 20
A = - (100 + 5)x 20 : 2
A = - 1050
b, B = (-4) + (-8) + (-12) + (-16) + ... + (-100)
B = - (4 + 8 + 12 + 16 + ... + 100)
Xét dãy số 4; 8; 12; 16;...; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 8 - 4 = 4
Dãy số trên có số số hạng là: (100 - 4) : 4 + 1 = 25
B = - (100 + 4) \(\times\) 25 : 2
B = - 1300
Ta có: \(\left\{{}\begin{matrix}\left|2y-27\right|^{2023}\ge0\forall y\\\left(3x+10\right)^{2024}\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow\left|2y-27\right|^{2023}+\left(3x+10\right)^{2024}\ge0\forall x,y\)
Mà: \(\left|2y-27\right|^{2023}+\left(3x+10\right)^{2024}=0\)
nên: \(\left\{{}\begin{matrix}2y-27=0\\3x+10=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{27}{2}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
Vậy: ...
..9 \(\times\) ... = ... ...
19 \(\times\) 3 = 57
Bài 1: \(\overline{abcd}\) ⋮ 101
⇒ \(\overline{ab}\) \(\times\) 100 + \(\overline{cd}\) ⋮ 101
\(\overline{ab}\) \(\times\) 101 - \(\overline{ab}\) + \(\overline{cd}\) ⋮ 101
\(\overline{ab}\) \(\times\) 101 - (\(\overline{ab}\) - \(\overline{cd}\)) ⋮ 101
\(\overline{ab}\) - \(\overline{cd}\) ⋮ 101 (đpcm)
238.(- 41)+ 41.138
giúp mình với huhu
làm ơn