K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

Mink trình bày theo ý hiểu nhé

Vì MN // AC và MP // AB, ta có các cặp góc tương đương:

=>Góc MNP = Góc BAC (do MN // AC và MP // AB)

=>Góc ANM = Góc ABC (do MN // AC và tam giác ANM là tam giác đồng dạng với tam giác ABC)

=>Góc NPA = Góc MAC (do MP // AB và tam giác MNP là tam giác đồng dạng với tam giác MAB)

Ta có cặp góc tương đương: Góc PAM = Góc CAB (do MP // AB)

=> cặp góc đối nhau:  Góc MNP = Góc BAC và Góc PAM = Góc CAB; Góc MNP = Góc PAM và Góc NPA = Góc ANM.

Vậy tứ giác ANMP là hình bình hành.

b) Để đoạn thẳng NP là nhỏ nhất, điểm M nằm ở trung điểm của BC.

Khi M nằm ở trung điểm của BC (hay AM = MC), ta có tứ giác ANMP là hình bình hành với đường chéo NP.

Trong hình bình hành, đoạn thẳng NP (đoạn chéo) là cực tiểu khi nó bằng chiều cao kẻ từ đỉnh A xuống đoạn thẳng BC. Khi M nằm ở trung điểm của BC, thì AM = MC, tức là đoạn thẳng NP chính là chiều cao của tam giác ABC kẻ từ đỉnh A xuống BC.

Vậy để NP là nhỏ nhất, điểm M phải nằm ở trung điểm của BC.

6 tháng 8 2023

 

 

 Gọi P là trung điểm BC. Ta thấy PM là đường trung bình của tam giác ABC nên \(PM=\dfrac{AB}{2}=\dfrac{7}{2}\) và PM//AB.

 Mặt khác, PN là đường trung bình của tam giác ACD nên \(PN=\dfrac{CD}{2}=\dfrac{9}{2}\) và PN//CD//AB.

 Theo tiên đề Euclid, P, M, N thẳng hàng và M nằm giữa N và P. Suy ra \(MN=PN-PM=\dfrac{9}{2}-\dfrac{7}{2}=1\). Vậy \(MN=1\)

6 tháng 8 2023

ai giúp mình với, cần gấp ạ:(((

 

5 tháng 8 2023

\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)

\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)

\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)

\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)

mà \(2a+12b+6c-13>2a+12b+6c-14\)

\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)

\(\Rightarrow dpcm\)

5 tháng 8 2023

(a1)2+(2b3)2+3(c1)2+1>0 (luôn đúng)

 BĐT ban đầu đúng

5 tháng 8 2023

Bạn xem lại đề

5 tháng 8 2023

XEM LẠI ĐỀ ĐI

5 tháng 8 2023

Ta có:

\(a^3+b^3+c^3+d^3\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+\left(c+d\right)^3-3cd\left(c+d\right)\)

\(=-\left(c+d\right)^3+3ab\left(c+d\right)+\left(c+d\right)^3-3cd\left(c+d\right)\) (vì \(a+b=-\left(c+d\right)\))

\(=3\left(c+d\right)\left(ab-cd\right)\) 

Vậy đẳng thức được chứng minh.

4 tháng 8 2023

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac 

⇒ 2ab + 2bc + 2ac = (a + b + c)2 - (a2 + b2 + c2)

⇒ 2.(ab + bc + ac) = 92 - 53

    2.(ab + bc + ac) = 81 - 53

     2.(ab + bc + ac) = 28

        ab + bc + ac = 28 : 2

        ab + bc + ac = 14

        

5 tháng 8 2023

ab + bc + cd = 14

HQ
Hà Quang Minh
Giáo viên
4 tháng 8 2023

\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

4 tháng 8 2023

\(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\\ \Leftrightarrow x^2+6x+9-x^2+4=4x+17\\ \Leftrightarrow x^2-x^2+6x-4x=17-4-9\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=\dfrac{4}{2}=2\)

4 tháng 8 2023

\(D=5-8x-x^2\\ =-\left[x^2+2.x.4+16\right]+21\\ =-\left(x+4\right)^2+21\le21\forall x\in R\\ \Rightarrow max_D=21.khi.x=-4\)

4 tháng 8 2023

\(E=4x-x^2+1\\ =-\left(x^2-2.x.2+4^2\right)+17\\ =-\left(x-2\right)^2+17\le17\forall x\in R\\ Vậy:max_E=17.khi.\left(x-2\right)=0\Leftrightarrow x=2\)