Cho \(\Delta ABC\)nhọn có \(\widehat{A}=45^0\). Chứng minh \(AB+AC\le2BC\sqrt{2}\).Cần thêm điều kiện gì của \(\Delta ABC\)để \(AB+AC=2BC\sqrt{2}?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB
a, \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}-x+\sqrt{x}-1}\right):\left(\frac{x+\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}+\frac{1}{x+1}\right)\)
\(=\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+1\right)\left(\sqrt{x}+1\right)}+\frac{1}{x+1}\right)\)
\(=\frac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}:\left(\frac{\sqrt{x}}{x+1}+\frac{1}{x+1}\right)\)
\(=\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+1}{x+1}\)
\(=\frac{\sqrt{x}-1}{x+1}.\frac{x+1}{\sqrt{x}+1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)(1 )
b, Thay x = 2 vào ( 1 ) ta được :
\(P=\frac{\sqrt{2}-1}{\sqrt{2}+1}\)
c, Thay \(P=\frac{1}{3}\)vào ( 1 ) ta được :
\(\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{1}{3}\)
<=> \(3\sqrt{x}-3=\sqrt{x}+1\)
<=> \(2\sqrt{x}=4\)
<=> \(\sqrt{x}=2\)
<=> \(x=4\)
OK bạn
Ví dụ 1: Cho a, b,c là các số không âm chứng minh rằng
(a+b)(b+c)(c+a)≥≥8abc
Cho các số thực dương a,b,c thỏa mãn điều kiện a + b + c = 3 . Tìm giá trị nhỏ nhất của \(A=4a^2+6b^2+3c^2\)
Đây nhé
HT
Xét \(\Delta ABC\)có D và F lần lượt là trung điểm của AB và BC \(\Rightarrow\)DF là đường trung bình của \(\Delta ABC\)
\(\Rightarrow DF//AC\)
Mà \(AB\perp AC\Rightarrow DF\perp AB\Rightarrow\widehat{ADF}=90^0\)
Xét tứ giác ADHF có \(\widehat{ADF}=\widehat{AHF}\left(=90^0\right)\Rightarrow\)Tứ giác ADHF nội tiếp được đường tròn. \(\Rightarrow\)Đường tròn đi qua A, D, H đi qua F. (1)
Dễ dàng chứng minh EF là đường trung bình của \(\Delta ABC\)\(\Rightarrow EF//AB\)
Mà \(AB\perp AC\Rightarrow EF\perp AC\Rightarrow\widehat{AEF}=90^0\)
Xét tứ giác ADFE có \(\widehat{DAE}=\widehat{ADF}=\widehat{AEF}\left(=90^0\right)\Rightarrow\)Tứ giác ADFE là hình chữ nhật \(\Rightarrow\)A,D,F,E cùng thuộc một đường tròn \(\Rightarrow\)Đường tròn đi qua A,D,F cũng đi qua E. Mà đường tròn đi qua A,D,F chính là đường tròn đi qua A,D,H nên đường tròn đi qua A,D,H đi qua E. (2)
Từ (1) và (2) \(\Rightarrowđpcm\)
tam giác BDE: M là tđ(trung điểm) DE, N là tđ BE => MN là đtb(đường trung bình) của tam giác BDE.=> MN//DB <=> MN//BA
tương tự c/m MQ là đtb của tam giác DEC=> MQ//EC hay MQ//AC. mà AC vuông góc AB=> MN vuông góc PQ.=> góc NMQ =90. tương tự theo cách đtb thì các góc còn lại của tứ giác MNPQ =90=> là hình chữ nhật
MN là đtb=> MN=1/2 DB. MQ=1/2 EC mà EC=DB=> MN=DB
=> tg là hình vuông(dhnb)