Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2+x\left(y-1\right)=5\\y\left(x-1\right)=1\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong các hàm số trên, các hàm số bậc nhất là:
\(y=25\left(x+5\right),y=\frac{10x+7}{9}\).
P = \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
P = \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
P = \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
P = \(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
P = \(\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}=\sqrt{4+\sqrt{25}}=\sqrt{9}=3\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-\sqrt{128}}}}}\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{2+2\sqrt{3}+\sqrt{\left(16-8\sqrt{2}+2\right)}}}}\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+\sqrt{\left(4-\sqrt{2}\right)^2}}}}\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\sqrt{2}+2\sqrt{3}+4-\sqrt{2}}}}\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}\)
Q = \(\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{3}-1}}\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}=\left(\sqrt{3}-1\right).\sqrt{6+2\sqrt{3}-2}\)
Q = \(\left(\sqrt{3}-1\right)\sqrt{4+2\sqrt{3}}=\left(\sqrt{3}-1\right)\sqrt{\left(\sqrt{3}+1\right)^2}=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)=3-1=2\)
D = \(\sqrt{2+\sqrt{3}+\sqrt{4-2\sqrt{3}-\sqrt{21-12\sqrt{3}}}}\)
D = \(\sqrt{2+\sqrt{3}+\sqrt{4-2\sqrt{3}-\sqrt{\left(2\sqrt{3}-3\right)^2}}}\)
D = \(\sqrt{2+\sqrt{3}+\sqrt{4-2\sqrt{3}-2\sqrt{3}+3}}\)
D = \(\sqrt{2+\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}}\)
D = \(\sqrt{2+\sqrt{3}+2-\sqrt{3}}=\sqrt{4}=2\)
E = \(\sqrt{2-\sqrt{2\sqrt{5}-2}}-\sqrt{2+\sqrt{2\sqrt{5}-2}}\)
E2 = \(2-\sqrt{2\sqrt{5}-2}+2+\sqrt{2\sqrt{5}-2}-2\sqrt{\left(2-\sqrt{2\sqrt{5}-2}\right)\left(2+\sqrt{2\sqrt{5}-2}\right)}\)
E2 = \(4-2\sqrt{\left(4-2\sqrt{5}+2\right)}=4-2\sqrt{\left(\sqrt{5}-1\right)}^2=4-2\sqrt{5}+2=\left(\sqrt{5}-1\right)^2\)
=> E = \(\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
\(7:a,\sqrt{2-x}=3\)
\(\left|2-x\right|=3^2=9\)
\(\orbr{\begin{cases}2-x=9\\2-x=-9\end{cases}\orbr{\begin{cases}x=-7\left(KTM\right)\\x=11\left(TM\right)\end{cases}}}\)
\(b,\sqrt{4-4x+x^2}=3\)
\(\sqrt{\left(2-x\right)^2}=3\)
\(\left|2-x\right|=3\)
\(\orbr{\begin{cases}2-x=3\\2-x=-3\end{cases}\orbr{\begin{cases}x=-1\left(TM\right)\\x=5\left(TM\right)\end{cases}}}\)
\(c,\sqrt{4+x^2}+x=3\)
\(\sqrt{4+x^2}=3-x\)
\(4+x^2=\left(3-x\right)^2\)
\(4+x^2=9-6x+x^2\)
\(x=\frac{5}{6}\left(TM\right)\)
\(d,\frac{1}{2}\sqrt{16x-32}-2\sqrt{4x-8}+\sqrt{9x-18}=5\)
\(2\sqrt{x-2}-4\sqrt{x-2}+3\sqrt{x-2}=5\)
\(\sqrt{x-2}\left(2-4+3\right)=5\)
\(\sqrt{x-2}=5\)
\(\left|x-2\right|=25\)
\(\orbr{\begin{cases}x-2=25\\x-2=-25\end{cases}\orbr{\begin{cases}x=27\left(TM\right)\\x=-23\left(KTM\right)\end{cases}}}\)
\(\sqrt{1-8b+16b^2}\)
\(\sqrt{\left(1-4b\right)^2}\)
vậy với mọi giá trị thực của x thì biều thức đxđ
\(\sqrt{\frac{3a-4}{-5}}\sqrt{2x^2}\sqrt{2x^2+1}\)
\(\hept{\begin{cases}2x^2+1\ge0\\2x^2\ge0\\3x-4\le0\end{cases}}\)
\(\hept{\begin{cases}x\\x\ge0\\x\le\frac{4}{3}\end{cases}}\)đoạn x là tất cả các số thực
\(< =>0\le x\le\frac{4}{3}\)
\(\sqrt{\frac{-5}{x^2+1}}\)
\(x^2+1\ne0;x^2+1\le0< =>x^2+1< 0\left(1\right)\)
\(x^2+1\ge1\left(2\right)\)
\(\left(1\right);\left(2\right)< =>\)ko có giá trị x thỏa mãn để pt đc xác định
\(\hept{\begin{cases}x^2+y^2+xy-x=5\\xy-y=1\end{cases}}\)
\(\left(x+y\right)^2-\left(x+y\right)=6\)
đặt t = x+y
\(t^2-t=6\)
\(t^2-t-6=0\)
\(t^2-3t+2t-6=0\)
\(t\left(t-3\right)+2\left(t-3\right)=0\)
\(\orbr{\begin{cases}t-3=0\\t+2=0\end{cases}\orbr{\begin{cases}t=3\\t=-2\end{cases}}}\)
\(TH1:x+y=3< =>x=3-y\)
\(y\left(3-y-1\right)=1\)
\(y\left(2-y\right)=1\)
\(2y-y^2=1\)
\(y^2-2y+1=0\)
\(\left(y-1\right)^2=0\)
\(y=1< =>x=3-1=2\)
\(TH2:x+y=-2,=>x=-2-y\)
\(y\left(-2-y-1\right)=1\)
\(y\left(-3-y\right)=1\)
\(-3y-y^2=1\)
\(y^2+3y+1=0\)
\(\sqrt{\Delta}=\sqrt{5}\)
\(x_1=\frac{-3+\sqrt{5}}{2}< =>x=-\frac{1+\sqrt{5}}{2}\)
\(x_2=\frac{-3-\sqrt{5}}{2}< =>x=\frac{-1+\sqrt{5}}{2}\)
vậy hệ pt có 3 tập nghiệm là ..........