Giải phương trình: \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: x \(\ge\)-3/2
Ta có: \(\sqrt{2x+3}=\frac{8x^3+4x}{2x+5}\)
<=> \(\left(2x+5\right)\sqrt{2x+3}=8x^3+4x\)
<=> \(\left(2x+3\right)\sqrt{2x+3}+2\sqrt{2x+3}=8x^3+4x\)
Đặt \(\sqrt{2x+3}=a\)(a \(\ge\)0)
Do đó: \(a^3+2a=8x^3+4x\)
<=> \(\left(a-2x\right)\left(a^2+2ax+4x^2\right)+2\left(a-2x\right)=0\)
<=> \(\left(a-2x\right)\left(a^2+2ax+4x^2+2\right)=0\)
<=> \(a=2x\)(vì \(a^2+2ax+4x^2+2=\left(a+x\right)^2+3x^2+2>0\))
<=> \(\sqrt{2x+3}=2x\)(đk: x \(\ge\)0)
<=> \(4x^2=2x+3\)
<=> \(4x^2-2x-3=0\)
\(\Delta'=\left(-1\right)^2+4.3=13>0\)=> pt có 2 nghiệm pb
\(x_1=\frac{1+\sqrt{13}}{4}\); \(x_2=\frac{1-\sqrt{13}}{4}\)
đk: \(\frac{-3}{2}\le x\le12\)
pt \(\Leftrightarrow\left(x^2-2x\sqrt{2x+3}+2x+3\right)+\left(9-6\sqrt{12-x}+12-x\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+3}\right)^2+\left(3-\sqrt{12-x}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-\sqrt{2x+3}=0\left(1\right)\\3-\sqrt{12-x}=0\left(2\right)\end{cases}}\)
pt(1)\(\Leftrightarrow x=\sqrt{2x+3}\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x-3=0\end{cases}}\) \(\Leftrightarrow x\ge0\) và \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\) \(\Leftrightarrow x=3\)
pt(2) \(\Leftrightarrow\sqrt{12-x}=3\Leftrightarrow12-x=9\Leftrightarrow x=3\)
Vậy pt có nghiệm: x=3 (tm)
a,\(\sqrt{\frac{x-3}{4-x}}\)
Biểu thức trên xác định
\(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)
Vậy biểu thức trên xác định khi \(3\le x< 4\)
b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)
Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)
=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow x>\frac{3}{2}\)
Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)
a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)
\(\Leftrightarrow3\le x< 4\)
b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)
mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)
nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)
\(\Leftrightarrow x>\frac{3}{2}\)
\(\sqrt{-7x}\)có nghĩa \(\Leftrightarrow-7x\ge0\)\(\Leftrightarrow x\le0\)
\(\sqrt{\frac{2x-4}{5-x}}\ge0\)
\(< =>\frac{2x-4}{5-x}\ge0;5-x\ne0\)
\(x\ne5\)
\(\frac{2x-4}{5-x}\ge0\)
\(TH1:2x-4\ge0;5-x\ge0\)
\(\hept{\begin{cases}x\ge2\\x\le5\end{cases}< =>2\le x\le}5\)
\(TH2:2x-4< 0;5-x< 0\)
\(\hept{\begin{cases}x< 2\\x>5\end{cases}}\)pt vô no
vậy ddeeer căn thức đc xác định thì\(2\le x\le5\)
ĐKXĐ : x \(\ne5\)
Để \(\sqrt{\frac{2x-4}{5-x}}\text{ có nghĩa }\Rightarrow\frac{2x-4}{5-x}\ge0\)
TH1 : \(\hept{\begin{cases}2x-4\ge0\\5-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2\\x< 5\end{cases}}\Leftrightarrow2\le x< 5\)
TH2 : \(\hept{\begin{cases}2x-4\le0\\5-x< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le2\\x>5\end{cases}}\Leftrightarrow x\in\varnothing\)
Để căn thức \(\sqrt{\frac{2x-4}{5-x}}\)thì \(2\le x< 5\)
sao này chỉ có làm thì mới có ăn ko làm mà đòi có ăn thì ăn ĐB ăn C
ý mik là bạn để chụp sa quá
\(\sqrt{\left(3-5x\right)\left(x-6\right)}\ge0\)
\(< =>TH1:3-5x\ge0;x-6\ge0\)
\(\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}}\)pt vô nghiệm
\(TH2:3-5x< 0;x-6< 0\)
\(\hept{\begin{cases}3-5x< 0\\x-6< 0\end{cases}\hept{\begin{cases}x>\frac{3}{5}\\x< 6\end{cases}}}\)
để căn thức đxđ thì\(\frac{3}{5}< x< 6\)
\(\sqrt{\left(3-5x\right)\left(x-6\right)}\) có nghĩa \(\Leftrightarrow\left(3-5x\right)\left(x-5\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}3-5x\ge0\\x-6\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}3-5x\le0\\x-6\le0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{5}\\x\ge6\end{cases}}\)(vô lí) Hoặc \(\hept{\begin{cases}x\ge\frac{3}{5}\\x\le6\end{cases}}\)
\(\Leftrightarrow\frac{3}{5}\le x\le6\)
đk: \(x>-3\)
pt \(\Leftrightarrow\left(2-\sqrt{\frac{1}{x+3}}\right)+\left(2-\sqrt{\frac{5}{x+4}}\right)=0\)
\(\Leftrightarrow\frac{4-\frac{1}{x+3}}{2+\sqrt{\frac{1}{x+3}}}+\frac{4-\frac{5}{x+4}}{2+\sqrt{\frac{5}{x+4}}}=0\)
\(\Leftrightarrow\frac{4x+11}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{4x+11}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}=0\)
Vì x>-3 \(\Rightarrow\frac{1}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{1}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}=0\)
=> 4x+11=0 => x=\(\frac{-11}{4}\left(tm\right)\)