a)\(\frac{\sqrt{7\left(-x\right)^2y^4}}{\sqrt{28x^4y^4}}\)với \(x>0;y\ne0\)
b)\(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x+2\sqrt{2x-1}}\)
với \(\frac{1}{2}\le x\le1\)
c)\(\frac{1}{3}\sqrt{9x-27}+\sqrt{2x-6}-\sqrt{4x-12}=2-\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x lớn hơn howcj bằng -9/2 và bé hơn hoặc bằng 5/4
<=> -9/2<x<5/4
=>2x+9=5-4x
=>x=-2/3 (TM)
b)
<=> can(2/75)*can(1/2)*can(121/32)
<=>can(2*1*121)/can(2*75*32)=can(121/2400)
c) cau nay sai de bai roi, em check lai ngoac thu 2 xem
\(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}+\sqrt{1,6}+3\sqrt{0,4}\right)\)
\(=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}+\frac{2\sqrt{10}}{5}+\frac{3\sqrt{10}}{5}\right)\)
\(=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}+\frac{5\sqrt{10}}{5}\right)=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}+\sqrt{10}\right)=10-2=8\)
Cho tam giác ABC cân tại A, có ∠A = 20◦ , độ dài BC = a, AC = AB = b. Chứng minh rằng a3 + b3 = 3ab2
\(25t^2-20t=9-12\)
\(\Leftrightarrow25t^2-20t=-3\)
\(\Leftrightarrow25t^2-20t+3=0\)
\(\Leftrightarrow25t^2-5t-15t+3=0\)
\(\Leftrightarrow5t\left(5t-1\right)-3\left(5t-1\right)=0\)
\(\Leftrightarrow\left(5t-1\right)\left(5t-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5t-1=0\\5t-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}t=\frac{1}{5}\\t=\frac{3}{5}\end{cases}}}\)
Vì \(t\ge\frac{3}{5}\) nên \(t=\frac{3}{5}\) thoả mãn đề bài.
\(a,\frac{\sqrt{7x^2y^4}}{\sqrt{28x^4y^4}}\)
\(\frac{\sqrt{7}xy^2}{2\sqrt{7}x^2y^2}=\frac{1}{2x}\)
\(b,\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x+2\sqrt{2x-1}}\)
\(\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1+2\sqrt{2x-1}+1}\)
\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x-1}+1\right)^2}\)
\(\left|\sqrt{2x-1}+1\right|+\left|\sqrt{2x-1}+1\right|\)
\(\sqrt{2x-1}+1+\sqrt{2x-1}+1\)
\(2\sqrt{2x-1}+2\)
\(c,\frac{1}{3}\sqrt{9x-27}+\sqrt{2x-6}-\sqrt{4x-12}=2-\sqrt{2}\)
\(\sqrt{x-3}+\sqrt{2}\sqrt{x-3}-2\sqrt{x-3}=2-\sqrt{2}\)
\(\sqrt{x-3}\left(1+\sqrt{2}-2\right)=2-\sqrt{2}\)
\(\sqrt{x-3}\left(\sqrt{2}-1\right)=\sqrt{2}\left(\sqrt{2}-1\right)\)
\(\sqrt{x-3}=\sqrt{2}\)
\(x-3=2< =>x=5\)
a) \(\frac{\sqrt{7\left(-x^2\right)y^4}}{\sqrt{28x^4y^4}}=\frac{\sqrt{7}xy^2}{2\sqrt{7}x^2y^2}=\frac{1}{2x}\)(vì x > 0)
b) \(\sqrt{2x+2\sqrt{2x-1}}+\sqrt{2x+2\sqrt{2x-1}}\)
\(=\sqrt{2x-1+2\sqrt{2x-1}+1}+\sqrt{2x-1+2\sqrt{2x-1}}\)
\(=\sqrt{\left(\sqrt{2x-1}+1\right)^2}+\sqrt{\left(\sqrt{2x+1}+1\right)^2}=\sqrt{2x-1}+1+\sqrt{2x+1}+1\)
\(=2\sqrt{2x-1}+2\)
c) ĐK: x \(\ge\)3
Ta có:: \(\frac{1}{3}\sqrt{9x-27}+\sqrt{2x-6}-\sqrt{4x-12}=2-\sqrt{2}\)
<=> \(\sqrt{x-3}+\sqrt{2}.\sqrt{x-3}-2\sqrt{x-3}=2-\sqrt{2}\)
<=> \(\sqrt{x-3}.\left(\sqrt{2}-1\right)=\sqrt{2}\left(\sqrt{2}-1\right)\)
<=> \(\sqrt{x-3}=\sqrt{2}\) <=> x - 3 = 2 <=> x = 5 (tm)