Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 14:
Số bao đường ở mỗi kho ban đầu là:
168:3=56(bao)
Số bao đường ở mỗi kho sau đó là:
56+16=72(bao)
Số bao đường đã bán hết là:
72x2=144(bao)
a: Ta có: \(\widehat{xOy}=\widehat{mOn}\)(hai góc đối đỉnh)
mà \(\widehat{xOy}=50^0\)
nên \(\widehat{mOn}=50^0\)
Ta có: \(\widehat{xOy}+\widehat{mOy}=180^0\)(hai góc kề bù)
=>\(\widehat{mOy}+50^0=180^0\)
=>\(\widehat{mOy}=130^0\)
Ta có: \(\widehat{xOn}=\widehat{mOy}\)(hai góc đối đỉnh)
mà \(\widehat{mOy}=130^0\)
nên \(\widehat{xOn}=130^0\)
b: Oa là phân giác của góc xOy
=>\(\widehat{yOa}=\dfrac{\widehat{xOy}}{2}=25^0\)
Ta có: Ob là phân giác của góc yOm
=>\(\widehat{yOb}=\dfrac{\widehat{yOm}}{2}=65^0\)
Ta có: \(\widehat{aOb}=\widehat{aOy}+\widehat{bOy}=25^0+65^0=90^0\)
Ta có:
+) Vì \(\overline{2abb}⋮\) \(2\) và \(5\)nên:
\(b=0\)
+) Vì \(\overline{2abb}⋮3\) nên:
\(2+a+b+b=2+a+0+0=a+2⋮3\)
\(\Rightarrow\left(a+2\right)\in\left\{3,6,9\right\}\) (vì \(1\le a\le9\))
\(\Rightarrow a\in\left\{1,4,7\right\}\)
Vậy...
Bài 14:
1: \(A=x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>\(x=\dfrac{1}{2}\)
2: \(B=x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{1}{2}=0\)
=>\(x=-\dfrac{1}{2}\)
3: \(C=x^2-4x+1\)
\(=x^2-4x+4-3\)
\(=\left(x-2\right)^2-3>=-3\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
4: \(D=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{5}{2}=0\)
=>\(x=\dfrac{5}{2}\)
5: \(E=x^2+2x+2\)
\(=x^2+2x+1+1=\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
6: \(F=x^2-3x+1\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{5}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2-\dfrac{5}{4}>=-\dfrac{5}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{3}{2}=0\)
=>\(x=\dfrac{3}{2}\)
7: \(G=x^2+3x+3\)
\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi x+3/2=0
=>x=-3/2
8: \(H=3x^2+3-5x\)
\(=3\left(x^2-\dfrac{5}{3}x+1\right)\)
\(=3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}+\dfrac{11}{36}\right)\)
\(=3\left(x-\dfrac{5}{6}\right)^2+\dfrac{11}{12}>=\dfrac{11}{12}\forall x\)
Dấu '=' xảy ra khi x-5/6=0
=>x=5/6
9: \(I=4x+2x^2+3\)
\(=2\left(x^2+2x+\dfrac{3}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{1}{2}\right)\)
\(=2\left(x+1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
10: \(K=4x^2+3x+2\)
\(=\left(2x\right)^2+2\cdot2x\cdot\dfrac{3}{4}+\dfrac{9}{16}+\dfrac{23}{16}\)
\(=\left(2x+\dfrac{3}{4}\right)^2+\dfrac{23}{16}>=\dfrac{23}{16}\forall x\)
Dấu '=' xảy ra khi 2x+3/4=0
=>x=-3/8
11: M=(x-1)(x-3)+11
\(=x^2-4x+3+11=x^2-4x+14\)
\(=x^2-4x+4+10=\left(x-2\right)^2+10>=10\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
12: \(N=\left(x-3\right)^2+\left(x-2\right)^2\)
\(=x^2-6x+9+x^2-4x+4\)
\(=2x^2-10x+13\)
\(=2\left(x^2-5x+\dfrac{13}{2}\right)=2\left(x^2-5x+\dfrac{25}{4}+\dfrac{1}{4}\right)\)
\(=2\left(x-\dfrac{5}{2}\right)^2+\dfrac{1}{2}>=\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x-5/2=0
=>x=5/2
a: Xét ΔBAE và ΔBDE có
BA=BD
\(\widehat{ABE}=\widehat{DBE}\)
BE chung
Do đó: ΔBAE=ΔBDE
b: ΔBAE=ΔBDE
=>\(\widehat{BAE}=\widehat{BDE}\)
=>\(\widehat{BDE}=90^0\)
=>DE\(\perp\)BC tại D
XétΔBHF vuông tại H và ΔBHC vuông tại H có
BH chung
\(\widehat{HBF}=\widehat{HBC}\)
Do đó ΔBHF=ΔBHC
c: Xét ΔBFC có
BH,CA là các đường cao
BH cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>FE\(\perp\)BC
mà DE\(\perp\)BC
và FE,DE có điểm chung là E
nên F,E,D thẳng hàng
\(d.\dfrac{59-x}{41}+\dfrac{57-x}{43}=\dfrac{41-x}{59}+\dfrac{43-x}{57}\\ \left(\dfrac{59-x}{41}+1\right)+\left(\dfrac{57-x}{43}+1\right)=\left(\dfrac{41-x}{59}+1\right)+\left(\dfrac{43-x}{57}+1\right)\\ \dfrac{100-x}{41}+\dfrac{100-x}{43}=\dfrac{100-x}{59}+\dfrac{100-x}{57}\\ \left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}-\dfrac{1}{59}-\dfrac{1}{57}\right)=0\\ 100-x=0\\ x=100\)
bài 4:
\(C=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{98\cdot100}\right)\)
\(=\left(1+\dfrac{1}{2^2-1}\right)\left(1+\dfrac{1}{3^2-1}\right)\cdot...\cdot\left(1+\dfrac{1}{99^2-1}\right)\)
\(=\dfrac{2^2}{2^2-1}\cdot\dfrac{3^2}{3^2-1}\cdot...\cdot\dfrac{99^2}{99^2-1}\)
\(=\dfrac{2\cdot3\cdot...\cdot99}{1\cdot2\cdot3\cdot...\cdot98}\cdot\dfrac{2\cdot3\cdot...\cdot99}{3\cdot4\cdot...\cdot100}=\dfrac{99}{1}\cdot\dfrac{2}{100}=\dfrac{99}{50}\)
Bài 5:
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{204}{1}+\dfrac{203}{2}+...+\dfrac{1}{204}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\left(1+\dfrac{203}{2}\right)+\left(1+\dfrac{202}{3}\right)+...+\left(\dfrac{1}{204}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{205}}{\dfrac{205}{2}+\dfrac{205}{3}+...+\dfrac{205}{205}}=\dfrac{1}{205}\)
Bài 5
Ta có:
\(x^2-x-6=\left(x-3\right)\left(x+2\right)\) và đa thức chia bậc 2 nên dư là \(ax+b\)
Vậy \(f\left(x\right)=\left(x-3\right)\left(x+2\right)\left(x^2+4\right)+ax+b\)
Theo định lí Bezout, dư trong phép chia \(f\left(x\right)\) cho \(x-3\) là \(f\left(3\right)=21\) cho \(x+2\) là \(f\left(-2\right)=4\) nên ta có: \(\left\{{}\begin{matrix}3a+b=21\\-2a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=6\end{matrix}\right.\)
Đa thức cần tìm là \(\left(x+2\right)\left(x-3\right)\left(x^2+4\right)+5x+6=x^4-x^3-2x^2+x-18\)
Bài 4:
\(2n^2+6n-7⋮n-2\)
=>\(2n^2-4n+10n-20+13⋮n-2\)
=>\(13⋮n-2\)
=>\(n-2\in\left\{1;-1;13;-13\right\}\)
=>\(n\in\left\{3;1;15;-11\right\}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}ab\cdot sinC=\dfrac{1}{2}\cdot7\cdot23\cdot sin130^o=61,7\) (đvdt)