tìm n € N, để 5 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ư(24)={ 1 ,2 ,3 ,4 ,6 ,8 ,12 ,24 }
A={ 1 ,2 , 3, 4, 6, 8, 12, 24 }
A={ 12, 24 }
Vậy A={ 12, 24 }
chúc bạn học tốt. Cho tick nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Để xác định xem 3n+10 có chia hết cho 2n+1 hay không, ta có thể sử dụng phép chia và kiểm tra phần dư. Nếu phần dư bằng 0, tức là 3n+10 chia hết cho 2n+1.
theo đề bài ta có:(3n+10) chia hết cho (2n+1)
(2n+1) chia hết cho (2n+1)
suy ra:{[2(3n+10)]-[3(2n+1)]} chia hết cho (2n+1)
hay 17 chia hết cho (2n+1)
suy ra: 2n+1 e Ư(17)
Ư(17)={1;17}
2n+1=1 thì n=0
2n+1=17 thì n=8
vậy n e {0;8}
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(58+7x=100\)
\(=>7x=100-58\)
\(=>7x=42\)
\(=>x=42:7\)
\(=>x=6\)
b) \(3x-7=28\)
\(=>3x=28+7\)
\(=>3x=35\)
\(=>x=35:3\)
\(=>x=\dfrac{35}{3}\)
c) \(x-56:4=16\)
\(=>x-14=16\)
\(=>x=16+14\)
\(=>x=30\)
d) \(101+\left(36-4x\right)=105\)
\(=>36-4x=105-101\)
\(=>36-4x=4\)
\(=>4x=36-4\)
\(=>4x=32\)
\(=>x=32:4\)
\(=>x=8\)
e) \(\left(x-12\right):12=12\)
\(=>x-12=12.12\)
\(=>x-12=144\)
\(=>x=144-12\)
\(=>x=132\)
f) \(\left(3x-2^4\right).7^3=2.7^4\)
\(=>3x-2^4=2.7^4:7^3\)
\(=>3x-16=2.7=14\)
\(=>3x=14+16\)
\(=>3x=30\)
\(=>x=30:3\)
\(=>x=10\)
i) \(\left(10+2x\right).4^{2011}=4^{2013}\)
\(=>10+2x=4^{2013}:4^{2011}\)
\(=>10+2x=4^2=16\)
\(=>2x=16-10\)
\(=>2x=6\)
\(=>x=6:2\)
\(=>x=3\)
\(#WendyDang\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để tìm số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên, chúng ta có thể thử từng giá trị của a cho đến khi tìm được số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Theo yêu cầu của bài toán, ta có:
- A + 1 chia hết cho 2: Điều này có nghĩa là A là số lẻ.
- a chia hết cho tích của hai số nguyên tố liên tiếp: Điều này có nghĩa là a chia hết cho 2 hoặc a chia hết cho 3.
- Tích 2023 x a là số chính phương: Điều này có nghĩa là 2023 x a là một số mà căn bậc hai của nó là một số nguyên.
Với các điều kiện trên, chúng ta có thể thử từng giá trị của a để tìm số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Ta có thể phân tích số 2023 thành tích của các thừa số nguyên tố như sau: 2023 = 7 x 17 x 17. Vì vậy, để tích 2023 x a là một số chính phương, ta cần a chia hết cho 7 và 17.
Tiếp theo, ta xét điều kiện a chia hết cho 2 hoặc a chia hết cho 3. Ta thử từng giá trị của a để tìm số a thỏa mãn các điều kiện trên.
Từ các phân tích trên, ta có thể thử các giá trị a như sau:
- a = 7 x 17 = 119: a chia hết cho 7 và 17, và tích 2023 x a = 2023 x 119 = 240737 chính phương.
- a = 2 x 7 x 17 = 238: a chia hết cho 2, 7 và 17, và tích 2023 x a = 2023 x 238 = 482074 chính phương.
Vậy, số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên là a = 119.
Dài thế bạn
Có đúng ko vậy bài này là đề thi thử mà có 0,5 mà sao khó zậy bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(-13+15+5\)
\(=-13+\left(5+15\right)\)
\(=-13+20\)
\(=20-13\)
\(=7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(-11+21-\left(-21\right)\)
\(=-11+23+21\)
\(=\left(21-11\right)+23\)
\(=10+23\)
\(=33\)
`#3107.101107`
`-11 + 23 - (-21)`
`= -11 + 23 + 21`
`= 12 + 21`
`= 33`
Khi đó ta có: (n+5):(n+1)=n+1n+1+4n+1=1+4n+1(n+5):(n+1)=n+1n+1+4n+1=1+4n+1. Để n + 5 chia hết cho n + 1 thì ta phải có 4 chia hết cho n + 1, từ đó suy ra n+1∈U(4).
CHO TICK NHA!!!❤
Để $5\vdots n+1$
thì $n+1 \in \mathsf{Ư(5)}$
$\Rightarrow n+1\in \{1;5;-1;-5\}$
$\Rightarrow n\in \{0;4;-2;-6\}$