một sân trường HCM có chu vi 340m ba ,ần chiều dài lớn hơn 4 lần chiều rộng là 20 tính chiều dài và chiều rộng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi phương trình đường thẳng AB là (d): y=ax+b
Thay x=5 và y=2 vào y=ax+b, ta được:
\(a\cdot5+b=2\)(1)
Thay x=3 và y=-4 vào y=ax+b, ta được:
\(a\cdot3+b=-4\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5a+b=2\\3a+b=-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a=6\\5a+b=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=3\\b=2-5a=2-5\cdot3=-13\end{matrix}\right.\)
Vậy: AB: y=3x-13
b: M thuộc trục hoành nên M(x;0)
M(x;0); A(5;2); B(3;-4)
\(MA=\sqrt{\left(5-x\right)^2+\left(2-0\right)^2}=\sqrt{\left(x-5\right)^2+4}\)
\(MB=\sqrt{\left(3-x\right)^2+\left(-4-0\right)^2}=\sqrt{\left(x-3\right)^2+16}\)
ΔMAB cân tại M
=>MA=MB
=>\(\left(x-5\right)^2+4=\left(x-3\right)^2+16\)
=>\(\left(x-5\right)^2-\left(x-3\right)^2=12\)
=>\(x^2-10x+25-x^2+6x-9=12\)
=>-4x+16=12
=>-4x=-4
=>x=1
vậy: M(1;0)
a: A(-2;0); B(0;4); C(1;1); D(-3;2)
\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AD}=\left(-1;2\right)\)
Vì \(\dfrac{2}{-1}\ne2=\dfrac{4}{2}\)
nên A,B,D không thẳng hàng
\(\overrightarrow{AB}=\left(2;4\right);\overrightarrow{AC}=\left(3;1\right)\)
Vì \(\dfrac{2}{3}\ne\dfrac{4}{1}\)
nên A,B,C không thẳng hàng
b: \(AB=\sqrt{2^2+4^2}=2\sqrt{5};AC=\sqrt{3^2+1^2}=\sqrt{10}\)
\(BC=\sqrt{\left(1-0\right)^2+\left(1-4\right)^2}=\sqrt{10}\)
Vì \(CA^2+CB^2=AB^2\)
nên ΔCAB vuông tại C
=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot10=5\)
Xét ΔABC vuông tại A có \(cosABC=\dfrac{AB}{BC}\)
=>\(\dfrac{2}{BC}=cos60=\dfrac{1}{2}\)
=>BC=4(cm)
Xét ΔAHB vuông tại H có \(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{AH}{2}=sin60=\dfrac{\sqrt{3}}{2}\)
=>\(AH=\sqrt{3}\left(cm\right)\)
Đề bài sai, hãy thử với \(b=c=0,01\) ; \(a=2,98\)
Khi đó \(\sqrt{a^3}+\sqrt{b^3}+\sqrt{c^3}>5>3\)
a, \(x^2-mx+m-1=0\) (1)
Thay \(m=3\) vào pt (1), ta được:
\(x^2-3x+3-1=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy với \(m=3\) thì pt có nghiệm \(x\in\left\{1;2\right\}\)
b, \(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2\ge0;\forall m\)
\(\Rightarrow\) Pt có 2 nghiệm với mọi m
Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
Theo đề ra, ta có: \(x_1^2x_2+x_1x_2^2=6\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)=6\)
\(\Rightarrow\left(m-1\right)m=6\)
\(\Leftrightarrow m^2-m-6=0\)
\(\Leftrightarrow m^2-3m+2m-6=0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-2\end{matrix}\right.\)
Vậy: ...
\(\left(ac+bd\right)^2+\left(ad-bc\right)^2=\left(ac\right)^2+\left(bd\right)^2+2abcd+\left(ad\right)^2+\left(bc\right)^2-2abcd\)
\(=a^2c^2+b^2c^2+b^2d^2+a^2d^2\)
\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\) (đpcm)
Giải:
Gọi chiều dài là \(x\) (m); \(x\) > 0
Nửa chu vi của hình chữ nhật là: 340 : 2 = 170 (m)
Chiều rộng của hình chữ nhật là: 170 - \(x\) (m)
Ba lần chiều dài của hình chữ nhật là: \(x\times\) 3 = 3\(x\) (m)
Bốn lần chiều rộng của hình chữ nhật là: (170 - \(x\)) \(\times\) 4 = 680 - 4\(x\)(m)
Theo bài ra ta có phương trình:
3\(x\) - (680 - 4\(x\)) = 20
3\(x\) - 680 + 4\(x\) = 20
7\(x\) - 680 = 20
7\(x\) = 20 + 680
7\(x\) = 700
\(x\) = 700 : 7
\(x\) = 100
Vậy chiều dài của hình chữ nhật là: 100 m
Chiều rộng của hình chữ nhật là: 170 - 100 = 70 (m)
Kết luận: Chiều dài của hình chữ nhật là 100 m
Chiều rộng của hình chữ nhật là 70 m