Giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(ax+ay-3x-3y=\left(a-3\right)\left(x+y\right)\)
b) \(xy+1-x-y=\left(x-1\right)\left(y-1\right)\)
c) \(x^3-2x^2+2x-4=x^2\left(x-2\right)+2\left(x-2\right)=\left(x^2+2\right)\left(x-2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\((6x+x^3+4+4x^2):(x+2) \)
\(= x^2+2x+2 \)
\(\text {Thử lại :} \)
\((x^2+2x+2)(x+2)\)
\(=x^3+2x^2+2x+2x^2+4x+4 \)
\(=x^3+4x^2+6x+4\)
\(\text {Học tốt !}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tham khảo
a) Xét tứ giác AECF ta có:
AE = FC (gt)
AE // FC (ABCD là hình bình hành)
=> AECF là hình bình hành (dhnb).
Vì ABCD là hình bình hành => AB=CD
Mà AE = CF => EB=DF.
Xét tứ giác EBFD ta có:
EB=DF (cmt)
EM//DF (ABCD là hình bình hành).
=>EBFD là hình bình hành (dhnb).
b) Vì ABCD là hình bình hành => AD=BC
Mà DG = BH => AG=HF.
Xét tam giác AEG và tam giác CFH ta có:
Góc A = góc C (2 góc đối của hbh ABCD)
AE = CF (gt)
AG = HC (cmt)
=> tam giác AEG = tam giác CFH (c-g-c)
=> AG = FH (1)
Chứng minh tương tự với tam giác DGF = tam giác BHE (c-g-c)
=> EH = GF (2)
Từ (1) và (2) => tứ giác EHFG là hình bình hành (tứ giác có các cạnh đối bằng nhau).
c) Gọi I là giao điểm của AC và BD.
=> I là trung điểm của AC và BD.
Ta có AECF là hbh (cmt)
=> AC và EF cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC => I cũng là trung điểm của EF.
=> AC, BD, EF đồng quy tại I.
a) Xét tứ giác AECF ta có:
AE = FC (gt)
AE // FC (ABCD là hình bình hành)
=> AECF là hình bình hành (dhnb).
Vì ABCD là hình bình hành => AB=CD
Mà AE = CF => EB=DF.
Xét tứ giác EBFD ta có:
EB=DF (cmt)
EM//DF (ABCD là hình bình hành).
=>EBFD là hình bình hành (dhnb).
b) Vì ABCD là hình bình hành => AD=BC
Mà DG = BH => AG=HF.
Xét tam giác AEG và tam giác CFH ta có:
Góc A = góc C (2 góc đối của hbh ABCD)
AE = CF (gt)
AG = HC (cmt)
=> tam giác AEG = tam giác CFH (c-g-c)
=> AG = FH (1)
Chứng minh tương tự với tam giác DGF = tam giác BHE (c-g-c)
=> EH = GF (2)
Từ (1) và (2) => tứ giác EHFG là hình bình hành (tứ giác có các cạnh đối bằng nhau).
c) Gọi I là giao điểm của AC và BD.
=> I là trung điểm của AC và BD.
Ta có AECF là hbh (cmt)
=> AC và EF cắt nhau tại trung điểm của mỗi đường.
Mà I là trung điểm của AC => I cũng là trung điểm của EF.
=> AC, BD, EF đồng quy tại I.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x-2=\left(x-2\right)^2\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow x\in\left\{2,3\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)