Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk : \(-\frac{1}{2}\le x\le5\)
\(\Leftrightarrow\frac{\left(\sqrt{2x+1}-3\right)\left(\sqrt{2x+1}+3\right)}{\sqrt{2x+1}+3}-\frac{\left(\sqrt{5-x}-1\right)\left(\sqrt{5-x}+1\right)}{\sqrt{5-x}+1}+2x^2-7x-4=0\)
\(\Leftrightarrow\frac{2x+1-9}{\sqrt{2x+1}+3}-\frac{5-x-1}{\sqrt{5-x}+1}+\left(2x+1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(tm\right)\\...=0\end{cases}}\)
vì \(-\frac{1}{2}\le x\le5\) nên cái ngoặc thứ 2 vô nghiệm
vậy x = 4
Dưạ vào dạng này
Bài toán tám quân hậu là bài toán đặt tám quân hậu trên bàn cờ vua kích thước 8×8 sao cho không có quân hậu nào có thể "ăn" được quân hậu khác, hay nói khác đi không quân hậu nào có để di chuyển theo quy tắc cờ vua. Màu của các quân hậu không có ý nghĩa trong bài toán này. Như vậy, lời giải của bài toán là một cách xếp tám quân hậu trên bàn cờ sao cho không có hai quân nào đứng trên cùng hàng, hoặc cùng cột hoặc cùng đường chéo. Bài toán tám quân hậu có thể tổng quát hóa thành bài toán đặt n quân hậu trên bàn cờ n×n(n ≥ 4).
a) 2x + 1 là số chính phương
Đặt 2x + 1 = a2
=> 2x = (a - 1)(a + 1)
=> \(\orbr{\begin{cases}a-1⋮2\\a+1⋮2\end{cases}}\)=> a = 2q \(\pm\)1(q \(\inℕ\))
=> Khi a = 2q + 1 => \(x=2q\left(q+1\right)\)
Khi a = 2a - 1 => x = \(2q\left(q-1\right)\)
Vậy khi x = 2q(q + 1) ; x = 2q(q - 1) thì 8x + 1 số chính phương