K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

c: \(P=A:B=\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}:\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)

\(=\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\cdot\dfrac{\sqrt{x}+3}{\sqrt{x}-1}=\dfrac{2\sqrt{x}+3}{\sqrt{x}-1}\)

Để P là số nguyên thì \(2\sqrt{x}+3⋮\sqrt{x}-1\)

=>\(2\sqrt{x}-2+5⋮\sqrt{x}-1\)

=>\(5⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1\in\left\{1;-1;5;-5\right\}\)

=>\(\sqrt{x}\in\left\{2;0;6;-4\right\}\)

=>\(\sqrt{x}\in\left\{2;0;6\right\}\)

=>\(x\in\left\{4;0;36\right\}\)

mà x lớn nhất

nên x=36

a: Xét (O) có

ΔBAC nội tiếp

BC là đường kính

Do đó: ΔBAC vuông tại A

=>PA\(\perp\)BD tại A

Xét (O) có

ΔCIB nội tiếp

CB là đường kính

Do đó: ΔCIB vuông tại I

Xét tứ giác ADHC có \(\widehat{DAC}+\widehat{DHC}=90^0+90^0=180^0\)

nên ADHC là tứ giác nội tiếp

b: Xét ΔDBP có

PA,BH là các đường cao

PA cắt BH tại C

Do đó: C là trực tâm của ΔDBP

=>DC\(\perp\)BP

mà CI\(\perp\)BP

mà DC,CI có điểm chung là C

nên D,C,I thẳng hàng

loading...

GT

(O) có đường kính BC

\(A\in\left(O\right);AP>AC;P\in AC\)

PB\(\cap\)(O)={I}

PH\(\perp\)BC tại H, PH cắt BA tại D

KL

a: ACHD nội tiếp

b: D,C,I thẳng hàng

 

a: Xét tứ giác BEDC có \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

b: Xét (O) có

\(\widehat{CNM}\) là góc nội tiếp chắn cung CM

\(\widehat{CBM}\) là góc nội tiếp chắn cung CM

Do đó: \(\widehat{CNM}=\widehat{CBM}\)

mà \(\widehat{CBM}=\widehat{CED}\)(BEDC nội tiếp)

nên \(\widehat{HED}=\widehat{HNM}\)

=>ED//MN

c: Kẻ Ax là tiếp tuyến của (O) tại A

Xét (O) có

\(\widehat{xAC}\) là góc tạo bởi tiếp tuyến Ax và dây cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{xAC}=\widehat{ABC}\)

mà \(\widehat{ABC}=\widehat{ADE}\left(=180^0-\widehat{EDC}\right)\)

nên \(\widehat{xAC}=\widehat{ADE}\)

=>Ax//DE

=>OA\(\perp\)DE

a: Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)

nên AEHF là tứ giác nội tiếp

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{EAB}\) chung

Do đó: ΔAEB~ΔAFC

=>\(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)

=>\(AE\cdot AC=AF\cdot AB\)

c: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)

nên BFEC là tứ giác nội tiếp đường tròn tâm I, đường kính BC

=>IE\(\perp\)EM tại E

Xét ΔABC có

BE,CF là các đường cao

BE cắt CF tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại K

Ta có: ΔIEB cân tại I

=>\(\widehat{IEB}=\widehat{IBE}\)

\(\widehat{MEI}=\widehat{MEH}+\widehat{IEH}=90^0\)

\(\widehat{BHK}+\widehat{HBK}=90^0\)

mà \(\widehat{IEH}=\widehat{IBE}\)

nên \(\widehat{MEH}=\widehat{BHK}\)

=>\(\widehat{MEH}=\widehat{MHE}\)

=>ME=MH

Ta có: \(\widehat{MEH}+\widehat{MEA}=\widehat{AEH}=90^0\)

\(\widehat{MHE}+\widehat{MAE}=90^0\)

mà \(\widehat{MEH}=\widehat{MHE}\)

nên \(\widehat{MEA}=\widehat{MAE}\)

=>MA=ME

=>MA=MH

=>M là trung điểm của AH

a: Sửa đề: Trên cung nhỏ BC lấy điểm E

Xét (O) có

ΔAEB nội tiếp

AB là đường kính

Do đó: ΔAEB vuông tại E

Xét tứ giác BEFI có \(\widehat{BEF}+\widehat{BIF}=90^0+90^0=180^0\)

nên BEFI là tứ giác nội tiếp

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)DB tại C

Xét ΔAIF vuông tại I và ΔAEB vuông tại E có

\(\widehat{EAB}\) chung

Do đó: ΔAIF~ΔAEB

=>\(\dfrac{AI}{AE}=\dfrac{AF}{AB}\)

=>\(AI\cdot AB=AF\cdot AE\left(1\right)\)

Xét ΔACB vuông tại C có CI là đường cao

nên \(AI\cdot AB=AC^2\left(2\right)\)

Xét ΔADB vuông tại A có AC là đường cao

nên \(CA^2=CD\cdot CB\left(3\right)\)

Từ (1),(2),(3) suy ra \(AE\cdot AF=CB\cdot DC\)

1 tháng 5 2024

Điều kiện:

 \(\left\{{}\begin{matrix}x+\dfrac{3}{x}=\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\)

mà \(x^2\ge0\forall x\Rightarrow\left\{{}\begin{matrix}x^2+3>0\forall x\\x^2+7>0\forall x\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x^2+3}{x}\ge0\\\dfrac{x^2+7}{2\left(x+1\right)}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\2\left(x+1\right)>0\Leftrightarrow x+1>0\Leftrightarrow x>-1\end{matrix}\right.\)

\(\Leftrightarrow x>0\)

\(\sqrt{x+\dfrac{3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\sqrt{\dfrac{x^2+3}{x}}=\dfrac{x^2+7}{2\left(x+1\right)}\)

\(\Leftrightarrow\left(\sqrt{\dfrac{x^2+3}{x}}\right)^2=\left[\dfrac{x^2+7}{2\left(x+1\right)}\right]^2\)

\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{\left(x^2+7\right)^2}{\left[2\left(x+1\right)\right]^2}\)

\(\Leftrightarrow\dfrac{x^2+3}{x}=\dfrac{x^4+14x^2+49}{4\left(x+1\right)^2}=\dfrac{x^4+14x^2+49}{4\left(x^2+2x+1\right)}=\dfrac{x^4+14x^2+49}{4x^2+8x+4}\)

\(\Leftrightarrow\dfrac{\left(x^2+3\right)\left(4x^2+8x+4\right)}{x\left(4x^2+8x+4\right)}=\dfrac{x\left(x^4+14x^2+49\right)}{x\left(4x^2+8x+4\right)}\)

\(\Leftrightarrow\left(x^2+3\right)\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)

\(\Leftrightarrow x^2\left(4x^2+8x+4\right)+3\left(4x^2+8x+4\right)=x\left(x^4+14x^2+49\right)\)

\(\Leftrightarrow4x^4+8x^3+4x^2+12x^2+24x+12=x^5+14x^3+49x\)

\(\Leftrightarrow4x^4+8x^3+16x^2+24x+12=x^5+14x^3+49x\)

\(\Leftrightarrow x^5-4x^4+14x^3-8x^3-16x^2+49x-24x-12=0\)

\(\Leftrightarrow x^5-4x^4+6x^3-16x^2+25x-12=0\)

\(\Leftrightarrow x^5-x^4-3x^4+3x^3+3x^3-3x^2-13x^2+13x+12x-12=0\)

\(\Leftrightarrow x^4\left(x-1\right)-3x^3\left(x-1\right)+3x^2\left(x-1\right)-13x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4-3x^3+3x^2-13x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^4-x^3-2x^3+2x^2+x^2-x-12x+12\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^3\left(x-1\right)-2x^2\left(x-1\right)+x\left(x-1\right)-12\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-1\right)\left(x^3-2x^2+x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-2x^2+x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^3-3x^2+x^2-3x+4x-12\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[x^2\left(x-3\right)+x\left(x-3\right)+4\left(x-3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x-3\right)\left(x^2+x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\\x^2+x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\x^2+x+\dfrac{1}{4}+\dfrac{15}{4}=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=3\left(tm\right)\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\end{matrix}\right.\)

Có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

\(\Rightarrow x^2+x+4=0\) vô nghiệm

Vậy: \(x\in\left\{1;3\right\}\)

2 tháng 5 2024

kinh thật!

1 tháng 5 2024

Câu 1

∆' = [-(m + 1)]² - m(m + 2)

= m² + 2m + 1 - m² - 2m

= 1 > 0

Phương trình luôn có hai nghiệm phân biệt

Theo hệ thức Vi-ét, ta có:

x₁ + x₂ = 2(m + 1)/m

x₁x₂ = (m + 2)/m

1 tháng 5 2024

Câu 3:

∆' = 4 - (2 - √3)(2 + √2)

= 4 - 4 - 2√2 + 2√3 + √6

= √6 + 2√3 - 2√2 > 0

Phương trình luôn có hai nghiệm phân biệt

Theo hệ thức Vi-ét, ta có:

x₁ + x₂ = -4/(2 - √3)= -8 - 2√3

x₁x₂ = (2 + √2)/(2 - √3) = (2 + √2)(2 + √3)