Bài 7: Phân tích đa thức sau thành nhân tử:
a) 8x3+12x2y+6xy2+y3-z3
mình đang cần gấp câu này các bạn giúp mình nhé thank các bạn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4\(x^3\).y + \(\dfrac{1}{2}\)yz
=y.(4\(x^3\) + \(\dfrac{1}{2}\)z)
b, (a2 + b2 - 5)2 - 2.(ab + 2)2
= [a2 + b2 - 5 - \(\sqrt{2}\)(ab + 2) ].[ a2 + b2 - 5 + \(\sqrt{2}\)(ab +2)]
a) \(4x^3y+\dfrac{1}{2}yz=y\left(4x^3+\dfrac{1}{2}z\right)\)
b) \(\left(a^2+b^2-5\right)^2-2.\left(ab+2\right)^2\)
\(=\left[\left(a^2+b^2-5\right)+2\left(ab+2\right)\right]\left[\left(a^2+b^2-5\right)-2\left(ab+2\right)\right]\)
\(=\left[a^2+b^2-5+2ab+4\right]\left[a^2+b^2-5-2ab-4\right]\)
\(=\left[a^2+b^2+2ab-1\right]\left[a^2+b^2-2ab-9\right]\)
\(=\left[\left(a+b\right)^2-1\right]\left[\left(a-b\right)^2-9\right]\)
\(=\left[\left(a+b+1\right)\left(a+b-1\right)\right]\left[\left(a-b+3\right)\left(a-b-3\right)\right]\)
Ta có \(A=\overset{2n}{11...1}+\overset{n}{44...4}+1\)
\(A=\dfrac{1}{9}.\overset{2n}{99...9}+\dfrac{4}{9}.\overset{n}{99...9}+1\)
\(A=\dfrac{1}{9}\left(10^{2n}-1\right)+\dfrac{4}{9}\left(10^n-1\right)+1\)
\(A=\dfrac{10^{2n}-1+4.10^n-4+9}{9}\)
\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)
\(A=\left(\dfrac{10^n+2}{3}\right)^2\)
Dễ thấy \(10^n+2⋮3\) vì có tổng các chữ số là 3 nên \(\dfrac{10^n+2}{3}\inℕ^∗\). Vậy A là số chính phương (đpcm)
Lời giải:
\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)
Khi đó:
\(\text{VT}=\frac{a}{ab+bc+ac+a^2}+\frac{2b}{ab+bc+ac+b^2}+\frac{3c}{ab+bc+ac+c^2}\)
\(=\frac{a}{(a+b)(a+c)}+\frac{2b}{(b+a)(b+c)}+\frac{3c}{(c+a)(c+b)}\)
\(=\frac{a(b+c)+2b(a+c)+3c(a+b)}{(a+b)(b+c)(c+a)}\)
\(=\frac{3ab+4ac+5bc}{(a+b)(b+c)(c+a)}=\text{VP}\)
Hình bạn tự vẽ nha .
a) Tứ giác ABCD là hình bình hành
Suy ra : AB=CD (1)
Mà : M là trung điểm của AB ; N là trung điểm của DC
Suy ra : AM=MB và DN=CN (2)
Từ (1) và (2) suy ra : AM=MB=CN=DN
Suy ra : AM=CN(đpcm)
b) Ta có : MB = DN
Mà MB song song với DN ( AB song song với DC)
Suy ra : Tứ giác MBDN là hình bình hành .
Suy ra : MD=BN (đpcm)
c) Từ b) suy ra : MBDN là hbh
Suy ra : DM song song với BM (đpcm)
Xét hình thang ABCD ta có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
mà \(\left\{{}\begin{matrix}\widehat{B}+\widehat{D}=180^o\left(đề.bài\right)\\\widehat{B}+\widehat{A}=180^o\left(t/c.hình.thang\right)\end{matrix}\right.\)
\(\Rightarrow\widehat{C}=\widehat{D}\)
⇒ ABCD là hình thang cân (dpcm)
Ta có : AB // CD ⇒ \(\widehat{B}\) + \(\widehat{C}\) = 180o mà \(\widehat{B}+\widehat{D}=\) 180o ⇒ \(\widehat{D}=\widehat{C}\)
Vì AB // CD; \(\widehat{D}=\widehat{C}\) vậy ABCD là hình thang cân
`#040911`
`2,`
`(10a - 5)^2 = 100a (a - 1) + 25`
`\Leftrightarrow (10a)^2 - 2. 10a. 5 + 5^2 = 100a^2 - 100a + 25`
`\Leftrightarrow 100a^2 - 100a + 25 = 100a^2 - 100a + 25 (\text {luôn đúng})`
Vậy, `(10a - 5)^2 = 100a (a - 1) + 25`
____
`15^2 = 100. 2( 2 - 1) + 25 = 200 . 1 + 25 = 200 + 25 = 225`
`45^2 = 100. 5(5 - 1) + 25 = 500. 4 + 25 = 2000 + 25 = 2025`
`75^2 = 100. 8(8 - 1) + 25 = 800 . 7 + 25 = 5600 + 25 = 5625`
`95^2 = 100. 10(10 - 1) + 25 = 1000. 9 + 25 = 9000 + 25 = 9025`
_____
Tính nhẩm bình phương của 1 số có chữ số tận cùng là 5
1. Tìm stn a để số đã cho viết được dưới dạng 10a - 5
2. Lấy giá trị a đã tìm được vào biểu thức.
\(8x^3+12x^2y+6xy^2+y^3-z^3\)
\(=\left(2x+y\right)^3-z^3\)
\(=\left(2x+y-z\right)\left[4x^2+z\left(2x+y\right)+z^2\right]\)
a, 8a3 - 36a2 +54ab2 - 27b3
=(8a3-36a2b +54ab2 - 27b3)
=(2a-3b)2
=(2a-3b)(2a-3b)(2a-3b)
b, 8x3 + 12x2y + 6xy2 + y3 - z 3
=(8x3 + 12x2y + 6xy2 + y3) - z3
=(2x + y)3 - y3
=(2x + y +z) . [ (2x + Y)2 + 2(2x + y)+ z2
= (2x + y + z)(4x2 + 4xy + y2 + 4x + 2y + z2