Cho tia Ox vẽ 3 tia Oy,Oz,Ot trên cùng một nửa mặt phẳng chứa tia Ox sao cho xOy=30⁰,xOz=50⁰và xOt=110⁰ A tính zOt,yOt. B chứng tỏ rằng tia oz nằm giữa hai tia Oy và Ot
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chón ý B 5/8. Mình trả lời nhanh nhất nè bạn. Tick cho mình đi!
\(a.\left(\dfrac{3}{4}\right)^4\cdot\left(\dfrac{8}{9}\right)^2\\ =\left(\dfrac{3}{4}\right)^4\cdot\left(\dfrac{\left(2\sqrt{2}\right)^2}{3^2}\right)^2\\ =\left(\dfrac{3}{2}\right)^4\cdot\left(\dfrac{2\sqrt{2}}{3}\right)^4\\ =\left(\dfrac{3}{2}\cdot\dfrac{2\sqrt{2}}{3}\right)^4\\ =\left(\sqrt{2}\right)^4\\ =4\\ b.\left(\dfrac{-3}{5}\right)^6\cdot\left(\dfrac{-5}{3}\right)^5\\ =\left(-\dfrac{3}{5}\right)\cdot\left(-\dfrac{3}{5}\right)^5\cdot\left(\dfrac{-5}{3}\right)^5\\ =\left(-\dfrac{3}{5}\right)\cdot\left(-\dfrac{3}{5}\cdot-\dfrac{5}{3}\right)^5\\ =\left(-\dfrac{3}{5}\right)\cdot1\\ =-\dfrac{3}{5}\\ c.\left(\dfrac{4}{7}\right)^3\cdot\left(\dfrac{4}{7}\right)^5\cdot\left(\dfrac{7}{4}\right)^7\\ =\left(\dfrac{4}{7}\right)^8\cdot\left(\dfrac{7}{4}\right)^7\\ =\left(\dfrac{4}{7}\right)\cdot\left(\dfrac{4}{7}\right)^7\cdot\left(\dfrac{7}{4}\right)^7\\ =\left(\dfrac{4}{7}\right)\cdot\left(\dfrac{4}{7}\cdot\dfrac{7}{4}\right)^7\\ =\dfrac{4}{7}\)
a: \(\left(\dfrac{3}{4}\right)^4\cdot\left(\dfrac{8}{9}\right)^2=\dfrac{3^4}{4^4}\cdot\dfrac{8^2}{9^2}\)
\(=\dfrac{3^4}{3^4}\cdot\dfrac{2^6}{2^8}=\dfrac{1}{2^2}=\dfrac{1}{4}\)
b: \(\left(-\dfrac{3}{5}\right)^6\cdot\left(-\dfrac{5}{3}\right)^5\)
\(=\left(-\dfrac{3}{5}\right)^5\cdot\left(-\dfrac{5}{3}\right)^5\cdot\dfrac{-3}{5}=\left(-\dfrac{3}{5}\cdot\dfrac{-5}{3}\right)^5\cdot\dfrac{-3}{5}\)
\(=1^5\cdot\dfrac{-3}{5}=\dfrac{-3}{5}\)
c: \(\left(\dfrac{4}{7}\right)^3\cdot\left(\dfrac{4}{7}\right)^5\cdot\left(\dfrac{7}{4}\right)^7=\left(\dfrac{4}{7}\right)^8\cdot\left(\dfrac{7}{4}\right)^7\)
\(=\left(\dfrac{4}{7}\cdot\dfrac{7}{4}\right)^7\cdot\dfrac{4}{7}=1^7\cdot\dfrac{4}{7}=\dfrac{4}{7}\)
d: \(\dfrac{8^{14}}{4^4\cdot64^5}=\dfrac{2^{42}}{2^8\cdot2^{30}}=2^4=16\)
e: \(\dfrac{9^{10}\cdot27^7}{81^7\cdot3^{15}}=\dfrac{3^{20}\cdot3^{21}}{3^{28}\cdot3^{15}}=\dfrac{3^{41}}{3^{43}}=\dfrac{1}{3^2}=\dfrac{1}{9}\)
\(1.\dfrac{1}{3}\left(\dfrac{6}{5}-\dfrac{9}{4}\right)\\ =\dfrac{1}{3}\left(\dfrac{24}{20}-\dfrac{45}{20}\right)\\ =\dfrac{1}{3}\cdot\dfrac{-21}{20}\\ =\dfrac{-7}{20}\\ 2.-\dfrac{7}{5}\cdot\left(\dfrac{15}{14}+\dfrac{5}{7}\right)\\ =-\dfrac{7}{5}\cdot\left(\dfrac{15}{14}+\dfrac{10}{14}\right)\\ =-\dfrac{7}{5}\cdot\dfrac{25}{14}\\ =\dfrac{-5}{2}\\ 3.\dfrac{1}{5}:\dfrac{3}{10}+\dfrac{5}{6}\\ =\dfrac{1}{5}\cdot\dfrac{10}{3}+\dfrac{5}{6}\\ =\dfrac{2}{3}+\dfrac{5}{6}\\ =\dfrac{4}{6}+\dfrac{5}{6}\\ =\dfrac{3}{2}\)
1: \(\dfrac{1}{3}\left(\dfrac{6}{5}-\dfrac{9}{4}\right)=\dfrac{1}{3}\cdot\dfrac{24-45}{20}\)
\(=\dfrac{1}{3}\cdot\dfrac{-21}{20}=\dfrac{-7}{20}\)
2: \(\dfrac{-7}{5}\left(\dfrac{15}{14}+\dfrac{5}{7}\right)=-\dfrac{7}{5}\cdot\left(\dfrac{15}{14}+\dfrac{10}{14}\right)\)
\(=-\dfrac{7}{5}\cdot\dfrac{25}{14}=\dfrac{-5}{2}\)
3: \(\dfrac{1}{5}:\dfrac{3}{10}+\dfrac{5}{6}=\dfrac{1}{5}\cdot\dfrac{10}{3}+\dfrac{5}{6}=\dfrac{2}{3}+\dfrac{5}{6}=\dfrac{4}{6}+\dfrac{5}{6}=\dfrac{9}{6}=\dfrac{3}{2}\)
4: \(-\dfrac{4}{5}:\left(\dfrac{20}{9}-\dfrac{8}{3}\right)=\dfrac{-4}{5}:\left(\dfrac{20}{9}-\dfrac{24}{9}\right)\)
\(=-\dfrac{4}{5}:\dfrac{-4}{9}=\dfrac{4}{5}\cdot\dfrac{9}{4}=\dfrac{9}{5}\)
5: \(\dfrac{10}{7}:\dfrac{5}{14}-\dfrac{2}{3}=\dfrac{10}{7}\cdot\dfrac{14}{5}-\dfrac{2}{3}\)
\(=\dfrac{140}{35}-\dfrac{2}{3}=4-\dfrac{2}{3}=\dfrac{12}{3}-\dfrac{2}{3}=\dfrac{10}{3}\)
6: \(-\dfrac{3}{4}:\left(\dfrac{1}{4}-\dfrac{5}{8}\right)=\dfrac{-3}{4}:\left(\dfrac{2}{8}-\dfrac{5}{8}\right)=\dfrac{-3}{4}:\dfrac{-3}{8}\)
\(=\dfrac{3}{4}:\dfrac{3}{8}=\dfrac{3}{4}\cdot\dfrac{8}{3}=\dfrac{8}{4}=2\)
7: \(\dfrac{5}{26}-\dfrac{5}{7}:\dfrac{2}{7}=\dfrac{5}{26}-\dfrac{5}{7}\cdot\dfrac{7}{2}=\dfrac{5}{26}-\dfrac{5}{2}\)
\(=\dfrac{5}{26}-\dfrac{65}{26}=\dfrac{-60}{26}=\dfrac{-30}{13}\)
8: \(\dfrac{3}{4}:\dfrac{-3}{5}+\dfrac{1}{2}=\dfrac{3}{4}\cdot\dfrac{5}{-3}+\dfrac{1}{2}=-\dfrac{5}{4}+\dfrac{1}{2}\)
\(=-\dfrac{5}{4}+\dfrac{2}{4}=-\dfrac{3}{4}\)
9: \(\dfrac{1}{3}\cdot\left(\dfrac{2}{15}-\dfrac{4}{9}\right):\dfrac{1}{9}\)
\(=\dfrac{1}{3}\cdot9\cdot\left(\dfrac{6}{45}-\dfrac{20}{45}\right)\)
\(=3\cdot\dfrac{-14}{45}=\dfrac{-14}{15}\)
a: \(\dfrac{14}{-27}\cdot x=\dfrac{7}{9}\)
=>\(x=\dfrac{-7}{9}:\dfrac{14}{27}=\dfrac{-7}{9}\cdot\dfrac{27}{14}=\dfrac{-1}{2}\cdot3=-\dfrac{3}{2}\)
b: \(\left(2x-1\right):\dfrac{8}{9}=\dfrac{15}{4}\)
=>\(2x-1=\dfrac{15}{4}\cdot\dfrac{8}{9}=\dfrac{120}{36}=\dfrac{10}{3}\)
=>\(2x=\dfrac{10}{3}+1=\dfrac{13}{3}\)
=>\(x=\dfrac{13}{3}:2=\dfrac{13}{6}\)
c: \(\dfrac{2}{5}:x=\dfrac{3}{16}\)
=>\(x=\dfrac{2}{5}:\dfrac{3}{16}=\dfrac{2}{5}\cdot\dfrac{16}{3}=\dfrac{32}{15}\)
d: \(\dfrac{11}{12}-\left(\dfrac{2}{5}-3x\right)=\dfrac{2}{3}\)
=>\(\dfrac{2}{5}-3x=\dfrac{11}{12}-\dfrac{2}{3}=\dfrac{11}{12}-\dfrac{8}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)
=>\(3x=\dfrac{2}{5}-\dfrac{1}{4}=\dfrac{3}{20}\)
=>\(x=\dfrac{3}{20}:3=\dfrac{1}{20}\)
\(a)\dfrac{14}{-27}\cdot x=\dfrac{7}{9}\\ x=\dfrac{7}{9}:\dfrac{14}{-27}\\ x=\dfrac{7}{9}\cdot\dfrac{-27}{14}\\x =\dfrac{-3}{2}\\ b)\left(2x-1\right):\dfrac{8}{9}=\dfrac{15}{4}\\ 2x-1=\dfrac{15}{4}\cdot\dfrac{8}{9}\\ 2x-1=\dfrac{10}{3}\\ 2x=\dfrac{10}{3}+1\\ 2x=\dfrac{13}{3}\\ x=\dfrac{13}{3}:2=\dfrac{13}{6}\\ c)\dfrac{2}{5}:x=\dfrac{3}{16}\\ x=\dfrac{2}{5}:\dfrac{3}{16}\\ x=\dfrac{2}{5}\cdot\dfrac{16}{3}\\ x=\dfrac{32}{15}\\ d)\dfrac{11}{12}-\left(\dfrac{2}{5}-3x\right)=\dfrac{2}{3}\\ \dfrac{2}{5}-3x=\dfrac{11}{12}-\dfrac{2}{3}\\ \dfrac{2}{5}-3x=\dfrac{3}{12}\\ \dfrac{2}{5}-3x=\dfrac{1}{4}\\ 3x=\dfrac{2}{5}-\dfrac{1}{4}\\ 3x=\dfrac{3}{20}\\ x=\dfrac{3}{20}:3\\ x=\dfrac{1}{20}\)
a: \(0,25\in Q\)
=>Đúng
b: \(-\dfrac{6}{7}\in Q\)
=>Đúng
c: \(-235\notin Q\)
=>Sai
a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
b: ΔBAE=ΔBHE
=>BA=BH và EA=EH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: EA=EH
=>E nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BE là đường trung trực của AH
c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có
EA=EH
\(\widehat{AEK}=\widehat{HEC}\)
Do đó: ΔEAK=ΔEHC
=>EK=EC
mà EK>EA(ΔEAK vuông tại A)
nên EC>EA
a: BE=BD+DE
CD=CE+DE
mà BD=CE
nên BE=CD
Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(AN=NC=\dfrac{AC}{2}\)
mà AB=AC
nên AM=MB=AN=NC
Xét ΔMBE và ΔNCD có
MB=NC
\(\widehat{MBE}=\widehat{NCD}\)
BE=CD
Do đó: ΔMBE=ΔNCD
=>ME=ND
b:
Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
nên MN//BC
=>MN//DE
Xét tứ giác MNED có
MN//ED
ME=ND
Do đó: MNED là hình bình hành
=>MD=NE
Xét ΔMDE và ΔNED có
MD=NE
DE chung
ME=ND
Do đó: ΔMDE=ΔNED
=>\(\widehat{MED}=\widehat{NDE}\)
=>\(\widehat{IDE}=\widehat{IED}\)
=>ΔIED cân tại I
c: Ta có: \(\widehat{IDE}+\widehat{IDB}=180^0\)(hai góc kề bù)
\(\widehat{IED}+\widehat{IEC}=180^0\)(hai góc kề bù)
mà \(\widehat{IDE}=\widehat{IED}\)
nên \(\widehat{IDB}=\widehat{IEC}\)
Xét ΔIDB và ΔIEC có
ID=IE
\(\widehat{IDB}=\widehat{IEC}\)
DB=EC
Do đó: ΔIDB=ΔIEC
=>IB=IC
=>I nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AI là đường trung trực của BC
=>AI\(\perp\)BC
Bài 7:
p là số nguyên tố lớn hơn 3
=>p=3k+1 hoặc p=3k+2
Nếu p=3k+1 thì \(8p+1=8\left(3k+1\right)+1=24k+9=3\left(8k+3\right)⋮3\)
=>Loại
=>p=3k+2
\(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)
=>4p+1 là hợp số
Bài 6:
a: TH1: p=3
p+2=3+2=5; p+4=3+4=7
=>Nhận
TH2: p=3k+1
p+2=3k+1+2=3k+3=3(k+1)
=>Loại
TH3: p=3k+2
p+4=3k+2+4=3k+6=3(k+2)
=>Loại
b: TH1: p=5
p+2=5+2=7; p+6=5+6=11; p+18=5+18=23; p+24=5+24=29
=>Nhận
TH2: p=5k+1
p+24=5k+1+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+18=5k+2+18=5k+20=5(k+4)
=>Loại
TH4: p=5k+3
p+2=5k+3+2=5k+5=5(k+1)
=>Loại
TH5: p=5k+4
p+6=5k+4+6=5k+10=5(k+2)
=>Loại
Vậy: p=5
Bài 5:
Với p=2 => 7p+5=7*2 + 5 = 19 (tm)
Với p>3
TH1: p=3k+1
=> 7(3k+1)+5=21k+7+5=21k+12=3(7k+4) ⋮ 3
=> 7p+5 là hợp số
TH2: p=3k+2
=>7(3k+2)+5=21k+14+5=21k+19
Vì p là số nguyên tố lớn hơn 3 => p lẻ => 3k + 2 lẻ => 3k lẻ => k lẻ
k lẻ => 21k lẻ => 21k + 19 chẵn => 21k+19 ⋮ 2
=> 7p+5 là hơn số
Vậy có p=2 là thỏa mãn
Diện tích xung quanh của căn nhà là:
\(2\times\left(25+6\right)\times5=310\left(m^2\right)\)
Diện tích trần nhà là:
\(25\times6=150\left(m^2\right)\)
Diện tích cửa ra vào là:
\(3\times15=45\left(m^2\right)\)
Diện tích hai cửa sổ là:
\(2\times\left(1\times1\right)=2\left(m^2\right)\)
Diện tích cần sơn là:
\(\left(310+150\right)-\left(45+2\right)=413\left(m^2\right)\)
Chi phí để sơn căn phòng là:
\(413:1,2\times30000=10325000\)
Vậy...
a) Ta có: +) \(\widehat{zOt}+\widehat{xOz}=\widehat{xOt}\) (hai góc kề nhau)
Mà \(\widehat{xOz}=50^o;\widehat{xOt}=110^o\) (gt) nên:
\(\widehat{zOt}+50^o=110^o\)
\(\widehat{zOt}=110^o-50^o=60^o\)
+) \(\widehat{yOt}+\widehat{xOy}=\widehat{xOt}\) (hai góc kề nhau)
Mà \(\widehat{xOy}=30^o;\widehat{xOt}=110^o\) (gt) nên;
\(\widehat{zOt}+30^o=110^o\)
\(\widehat{zOt}=110^o-30^o=80^o\)
Vậy....
b) Ta có:
+) Ba tia \(Oy;Oz;Ot\) cùng nằm trên một nửa mặt phẳng có bờ \(Ox\)
+) \(\widehat{xOy}=30^o< \widehat{xOz}=50^o< \widehat{xOt}=110^o\)
Do đó: Tia \(Oz\) nằm giữa hai tia \(Oy\) và \(Ot\)
Vậy...
Mọi người giải giúp mình với