Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(HN\perp AC\) và \(AB\perp AC\) nên AB//HN. Do đó tứ giác ABHN là hình thang (1)
Mặt khác, tam giác ABC vuông tại A có trung tuyến AM nên \(AM=\dfrac{1}{2}BC=BM\), suy ra tam giác MAB cân tại M hay \(\widehat{ABH}=\widehat{NAB}\) (2)
Từ (1) và (2), ta suy ra tứ giác ABHN là hình thang cân. (đpcm)
\(2x^2-2xy-4x+y^2+4=0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-4x+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2=0\left(1\right)\)
mà \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0,\forall x;y\\\left(x-2\right)^2\ge0,\forall x\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4\(x^2\) + y2 - 12\(x\) + 10y + 34 = 0
(4\(x^2\) - 12\(x\) + 9) + (y2 + 10y + 25) = 0
(2\(x\) - 3)2 + (y + 5)2 = 0
(2\(x\) - 3)2 ≥ 0 ∀ \(x\); (y + 5)2 ≥ 0 ∀ y
(2\(x-3\))2 + (y + 5)2 = 0 ⇔ \(\left\{{}\begin{matrix}2x-3=0\\y+5=0\end{matrix}\right.\) ⇔ \(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-5\end{matrix}\right.\)
Kl: (\(x;y\)) = ( \(\dfrac{3}{2}\); -5)
\(4x^2+y^2-12x+10y+34=0\)
\(\Leftrightarrow4x^2-12x+9+y^2+10y+25=0\)
\(\Leftrightarrow\left(2x-3\right)^2+\left(y+5\right)^2=0\left(1\right)\)
mà \(\left\{{}\begin{matrix}\left(2x-3\right)^2\ge0,\forall x\\\left(y+5\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(2x-3\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-5\end{matrix}\right.\)
Ta có : \(4x^2+y^2-12x+10y+34=0\)
\(\Leftrightarrow4x^2-12x+9+y^2+10y+25=0\)
\(\Leftrightarrow\left(2x-3\right)^2+\left(y+5\right)^2=0\left(1\right)\)
Ta thấy : \(\left(2x-3\right)^2;\left(y+5\right)^2\ge0\)
Nên để (1) thoả mãn :
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=-5\end{matrix}\right.\)
Vậy........
\(5^{x+1}-5^x=100\cdot25^{29}\)
\(\Rightarrow5^x\left(5-1\right)=100\cdot\left(5^2\right)^{29}\)
\(\Rightarrow5^x\cdot4=100\cdot5^{58}\)
\(\Rightarrow5^x=\dfrac{100\cdot5^{58}}{4}\)
\(\Rightarrow5^x=25\cdot5^{58}\)
\(\Rightarrow5^x=5^{60}\)
\(\Rightarrow x=60\)
\(5^{x+1}-5x=100.25^{29}\)
\(5.5^x-5^x=4.25.25^{29}\)
\(5^x.\left(5-1\right)4.25^{30}\)
\(4.5^x-4.\left(5^2\right)^{30}\)
\(5x=5^{60}\)
\(x=60\)
Phương trình bậc hai có dạng: a\(x^2\) + b\(x\) + c
Bước 1: Đưa nó về bình phương của một tổng hoặc một hiệu cộng với một số nào đó. nếu a > 0 thì em sẽ tìm giá trị nhỏ nhất; nếu a < 0 thì em sẽ tìm giá trị lớn nhất
Bước 2: lập luận chỉ ra giá trị lớn nhất hoặc nhỏ nhất
Bước 3: kết luận
Giải:
A = 3\(x^2\) - 5\(x\) + 3 Vì a = 3 > 0 vậy biểu thức A chỉ tồn tại giá trị nhỏ nhất
A = 3\(x^2\) - 5\(x\) + 3
A = 3.(\(x\)2 - 2.\(x\).\(\dfrac{5}{6}\) + \(\dfrac{25}{36}\)) + \(\dfrac{11}{12}\)
A = 3.(\(x\) - \(\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\)
Vì (\(x-\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x\) - \(\dfrac{5}{6}\))2 ≥ 0 ⇒ 3.(\(x-\dfrac{5}{6}\))2 + \(\dfrac{11}{12}\) ≥ \(\dfrac{11}{12}\)
Amin = \(\dfrac{11}{12}\) ⇔ \(x\) = \(\dfrac{5}{6}\)