1.đố em tìm được trên một chiếc đồng hồ. Khi kim giờ quay được một vòng thì kim phút, kim giây quay được bao nhiêu vòng?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo ở đây:
Câu hỏi của Hann Hann - Toán lớp 7 - Học toán với OnlineMath
Ta có: \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\ge0\)với \(\forall x;y;z\)
Mà \(\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}\le0\)
\(\Rightarrow\left|3x-5\right|+\left(2y+5\right)^2+\left(4z-3\right)^{20}=0\)
\(\Rightarrow\hept{\begin{cases}3x-5=0\\2y+5=0\\4z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=\frac{-5}{2}\\x=\frac{3}{4}\end{cases}}}\)
Vậy \(x=\frac{5}{3};y=\frac{-2}{5};z=\frac{3}{4}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\)
\(\Leftrightarrow\frac{7a^2}{7c^2}=\frac{11a^2}{11c^2}=\frac{8b^2}{8d^2}=\frac{3ab}{3cd}\)
\(\Rightarrow\frac{7a^2+3ab}{7c^2+3cd}=\frac{11a^2-8b^2}{11c^2-8d^2}\)
\(\Rightarrow\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
\(\RightarrowĐPCM\)
Giả sử cả 3 góc của 1 tam giác đều bé hơn 60 độ. Khi đó tổng 3 góc sẽ bé hơn 180 độ.(vô lí)
Do đó phải có ít nhất 1 góc lớn hơn hoặc bằng 60 độ
Giả sử tam giác ABC không đều không có góc nào nhỏ hơn 60 độ.
\(\Rightarrow\widehat{BAC}=60^o+a;\widehat{ABC}=60^o+b;\widehat{ACB}=60^o+c\) ĐK: \(a;b;c\ge0\) và a;b;c không đồng thời bằng 0.
Mà ta có: \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=60^o+60^o+60^o=180^o\)
\(\Leftrightarrow60^o+a+60^o+b+60^o+c=180^o\)
\(\Leftrightarrow a+b+c=0\)
(mâu thuẫn)
Tam giác ABC không đều có ít nhất một góc trong nhỏ hơn 60o
a, Xét \(\Delta ABN\) và \(\Delta ACM\) có:
AB = AC (gt)
AN = AM (gt)
\(\widehat{A}\) chung
Do đó \(\Delta ABN=\Delta ACM\left(c.g.c\right)\)
=> BN = CM (2 cạnh tương ứng)
b, +) Vì \(\Delta ABC\) cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
Xét \(\Delta BMC\) và \(\Delta CNB\) có:
BM = CN (cmt)
\(\widehat{ABC}=\widehat{ACB}\) (cmt)
BC : cạnh chung
Do đó \(\Delta BMC=\Delta CNB\left(c.g.c\right)\)
+) Vì \(\Delta ABN=\Delta ACM\) (câu a) => \(\widehat{ABN}=\widehat{ACM}\) (2 góc tương ứng)
Ta có: \(\hept{\begin{cases}AM=AN\\AB=AC\end{cases}\Rightarrow AB-AM=AC-AN\Rightarrow}BM=CN\)
Xét \(\Delta BIM\) và \(\Delta CIN\) có:
\(\widehat{ABN}=\widehat{ACM}\left(cmt\right)\)
BM = CN (cmt)
\(\widehat{BIM}=\widehat{CIN}\) (đối đỉnh)
Do đó \(\Delta BIM=\Delta CIN\)
a) Vì Góc B1+B2=180 độ(2 góc kè bù)
Góc C1+C2=180 độ( 2 góc kề bù)
mà: Góc B1=C1( tam giác ABC là tam giác đều)
=>Góc B2=C2
Xét tam giác ABD và tam giác ACE, có:
AB=AC( tam giác ABC là tam giác đều)
Góc B2=C2( cmt)
BD=CE( gt)
=> Tam giác ABD= tam giác ACE(c-g-c)
=>Góc D= góc E( 2 góc tương ứng)
=> Tam giác ADE là tam giác cân tại A.
Chúc các bạn học tốt nhaa!
Ta có:
x và y là hai đại lượng tỉ lệ thuận
\(\Rightarrow\)\(\frac{x1}{y1}=\frac{x2}{y2}\)
\(\Rightarrow\)\(x1=x2.\frac{y1}{y2}=2.\left(\frac{-3}{4}\right):\frac{1}{7}=\frac{-21}{2}\)
x và y là hai đại lượng tỉ lệ thuận
\(\Rightarrow\frac{x1}{y1}=\frac{x2}{y2}\)
\(\Leftrightarrow\frac{x1}{x2}=\frac{y1}{y2}=\frac{\left(y1-x1\right)}{\left(y2-x2\right)}\)( tính chất dãy tỉ số bằng nhau )
Thay số ta có:
\(\frac{x1}{\left(-4\right)}=\frac{y1}{3}=\frac{-2}{\left(3-\left(-4\right)\right)}\)
\(\Leftrightarrow\frac{x1}{\left(-4\right)}=\frac{y1}{3}=\frac{-2}{7}\)
\(\Rightarrow x1=\left(-4\right).\left(\frac{-2}{7}\right)=\frac{8}{7}\)
\(y1=3.\left(\frac{-2}{7}\right)=\frac{-6}{7}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)( đổi 2 chỗ trung tỉ )
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)( tính chất dãy tỉ số bằng nhau ) ( 1 )
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)( tính chất dãy tỉ số bằng nhau ) ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vậy ( a + b ) ( c - d ) = ( a - b ) ( c + d ) ( đpcm )
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(a-b\right)\left(c+d\right)\)(đpcm)
Ta biết rằng 1 giờ = 60 phút = 3600 giây.
Do đó khi kim giờ đi được 1 giờ thì kim phút đi đwọc 1 vòng và kim giây quay đwọc 60 vòng trên mặt đồng hồ.
Vậy trên mặt chiếc đồng hồ khi kim giờ quay được 1 vòng thì kim phút quay được 1.12 = 12 (vòng) và kim giây quay được 60.12 = 720 (vòng)
Một chiếc đồng hồ được biểu diễn bởi 1 vòng tròn gồm 12 số.
Khi kim giờ quay được 1 vòng tức là đã hết 12 giờ.
Kim phút cũng quay được 12 vòng (mỗi vòng 1 giờ)
Kim giây quay được: 12 x 60 = 720 vòng (mỗi vòng là 1 phút mà có 12 giờ, 1 giờ có 60 phút).
Đ/s: 720 vòng