K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

P=(x^2 - 2x + 1) +2

P=(x-1)^2 + 2

 vì (x-1)^2 >=0   =>(x-1)^2 + 2 >=2

dấu "=" xảy ra khi x-1=0  

                      <=>x=1

vậy P_min là 2 khi x=1

15 tháng 10 2016

P thuoc rong 

chuc bn hoc gioi!

nhae#

@@@@

__________________________

15 tháng 10 2016

\(p\in\left\{\text{∅}\right\}\)

1 tháng 11

ΔAHB vuông tại H có HI là đường trung tuyến thuộc cạnh huyền AB

⇒ HI = IA = 1/2 AB (tính chất tam giác vuông)

⇒ Δ∆AHI cân tại I

⇒ ∠∠(IAH) = ∠∠(IHA) (1)

Δ∆AHC vuông tại H có HK là đường trung tuyến thuộc cạnh huyền AC

⇒ HK = KA = 1/2 AC (tính chất tam giác vuông)

⇒ Δ∆KAH cân tại K ⇒∠∠(KAH) = ∠∠(KHA) (2)

∠∠(IHK) = ∠∠(IHA) + ∠∠(KHA) (3)

Từ (1), (2) và (3) suy ra: ∠∠(IHK) = ∠∠(IAH) + ∠∠(KAH) = ∠∠(IAK) = ∠∠(BAC) = 90

15 tháng 10 2016

hở bạn có nhầm không? Phương trình này đúng rồi mà,đâu cần làm gì nữa 

15 tháng 10 2016

GIup vs

15 tháng 10 2016

há là has nhé

15 tháng 10 2016

BN À ĐÂY CÓ PHẢI LÀ TOÁN ĐÂU

19 tháng 9 2018

+ Trên tia đối của tia HC lấy điểm N sao cho HN=HC

+ H là trực tâm của ΔABC→HC⊥AB→BE⊥HNΔABC→HC⊥AB→BE⊥HN

+ ΔNBC có MH là đường trung bình →HM//NB Mà HM⊥FE→HE⊥BN

+ ΔNBH có BE và HE là đường cao cắt nhau ở E nên E là trực tâm của ΔNBH→NE⊥BHΔNBH→NE⊥BH 

+ H là trực tâm của ΔABC→BH⊥ACΔABC→BH⊥AC. Mà NE⊥BH→AC//NE→N1^=C1^NE⊥BH→AC//NE→N1^=C1^ (sl trong)
 

9 tháng 3 2020

â) trong tam giác DBC , co :

HC=HD( H là trung điểm CD)

MB=MC (M là trung điểm BC)

=> HM la duong trung binh trong tam giac DBC

=> HM// KB

=> MHB=KBH( so le trong )

Mặt khác , ta có :MHB + KHB= KHM

<=> MHB + KHB = 90

<=> KBH + KHB = 90

Theo định lý tổng ba góc trong tam giác KBH , co :

BKH = 180 - ( KBH + KHB )= 180 - 90= 90

=> KH vuông góc với BK

Trong tam giác DBH , co :

KH vuông góc với BK

BN vuông góc với DH ( gt)

KH cắt BN tại E (gt)

=> E là trực tâm của tam giác BDH

b)Nối D với E

Ta có : AC vuông góc với BH (gt)

DE vuông góc với BH (cach dung )

=> AC //DE

Xét tam giác DEH và tam giác CFH , co :

EDH= FCH (AC//DI)

DH=HC ( H là trung điểm)

DHE=CHF ( đối đỉnh )

=> tam giác DEH =tam giác CFH ( g-c-g)

=> EH =FH (dpcm)