K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

A B C E D I

a) Xét tam giác ABD và EBD có:

BA = BE (gt)

\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)

BD chung

\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)

\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)

b)  Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)

Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)

Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)

Vậy nên \(\widehat{EDC}=\widehat{ABC}\)

c) Gọi giao điểm của AE và BD là I.

Xét tam giác ABI và tam giác EBI có:

AB = EB (gt)

\(\widehat{ABI}=\widehat{EBI}\)

BD chung

\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)

\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)

Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)

Vậy nên \(AE\perp BD\)

21 tháng 11 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Leftrightarrow\frac{x^2}{5^2}=\frac{y^2}{7^2}=\frac{z^2}{3^2}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{358}{65}\)

\(\hept{\begin{cases}\frac{x^2}{25}=\frac{358}{65}\\\frac{y^2}{49}=\frac{358}{65}\\\frac{z^2}{9}=\frac{358}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x^2=\frac{1790}{13}\\y^2=\frac{17542}{65}\\z^2=\frac{3222}{65}\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{\frac{1790}{13}}\\y=\sqrt{\frac{17542}{65}}\\z=\sqrt{\frac{3222}{65}}\end{cases}}\)

Vậy ...

23 tháng 11 2017

có đúng ko bn

21 tháng 11 2017

a, 2017-|x-2017| = x

=> |x - 2017| = 2017 - x

Th1: x \(\ge\)2017

=> x - 2017 = 2017 - x

=> x + x = 2017 + 2017

=> x = 2017 (thỏa mãn)

Th2: x < 2017

=> x - 2017 = -2017 + x

=> x - x = -2017 + 2017

=> 0 = 0 

Vậy x = 2017

b, Vì \(\hept{\begin{cases}\left(2x-5\right)^{2018}\ge0\\\left(3y-7\right)^{2020}\ge0\\\left|x+y+z\right|\ge0\end{cases}\forall x,y,z}\)

\(\Rightarrow\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|\ge0\)

Mà \(\left(2x-5\right)^{2018}+\left(3y-7\right)^{2020}+\left|x+y+z\right|=0\)

Do đó \(\hept{\begin{cases}\left(2x-5\right)^{2018}=0\\\left(3y-7\right)^{2020}=0\\\left|x+y+z\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y-7=0\\x+y+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{3}\\z=\frac{-29}{6}\end{cases}}}\)

5 tháng 6 2018

đcm tkg ngu

21 tháng 11 2017

sorry mình chưa lên lớp 7

21 tháng 11 2017

Con kia trả lời như bị thừa ấy

21 tháng 11 2017

mọi người giúp mk với nhé

21 tháng 11 2017

lôi ở đâu ra AB vậy

21 tháng 11 2017

Lấy A,b trên Ox