Lớp 5A được chia thành các tổ. Nếu mỗi tổ có 9 học sinh thì thừa 1 học sinh. Nếu giữ nguyên số tổ nhưng mỗi tổ có 10 học sinh thì thiếu 3 học sinh. Hỏi lớp 5A có bao nhiêu học sinh, bao nhiêu tổ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(1)25-12\cdot2+2^3\\ =25-24+2^3\\ =1+8\\ =9\\ 2)45-12\cdot3+2^3\\ =45-36+2^3\\ =9+8\\ =17\\ 3)32+5\cdot13-3\cdot2^3\\ =32+65-3\cdot8\\ =97-24\\ =73\\ 4)150+50:5-2\cdot3^2\\ =150+10-2\cdot9\\ =160-18\\ =142\\ 5)35-2\cdot1^{111}+3\cdot7^2\\ =35-2\cdot1+3\cdot49\\ =35-2+147\\ =33+147\\ =180\\ 6)2023-5^3:25+27\\ =2023-125:25+27\\ =2023-5+27\\ =2023+22\\ =2045\)
Bài 1:
1: \(3^2\cdot5^3+9^2=9\cdot125+81=1206\)
2: \(55+45:3^2=55+45:9=55+5=60\)
3: \(8^3:4^2-5^2=\dfrac{2^6}{2^4}-25=2^2-25=4-25=-21\)
4: \(5\cdot3^2-32:2^2=5\cdot9-2^3=45-8=37\)
5: \(16:2^3+5^2\cdot4=16:8+25\cdot4=2+100=102\)
6: \(5\cdot2^2-18:3^2=5\cdot4-18:9=20-2=18\)
7: \(3\cdot5^2-15\cdot2^2=3\cdot25-15\cdot4=75-60=15\)
8: \(2^3\cdot6-72:3^2=8\cdot6-72:9=48-8=40\)
9: \(5\cdot2^2-27:3^2=5\cdot4-27:9=20-3=17\)
10: \(3\cdot2^4+81:3^2=3\cdot16+81:9=48+9=57\)
11: \(4\cdot5^3-32:2^5=4\cdot125-32:32=500-1=499\)
12: \(6\cdot5^2-32:2^4\)
\(=6\cdot25-32:16\)
=150-2=148
Bài 3:
1: \(2^8:2^4+3^2\cdot3\)
\(=2^4+3^3\)
=16+27=43
2: \(3^{24}:3^{21}+2^2\cdot2^3\)
\(=3^3+2^5\)
=27+32=59
3: \(5^9:5^7+12\cdot3+7^0\)
\(=5^2+4+1\)
=25+5=30
4: \(5^6:5^4+3^2-2021^0\)
\(=5^2+9-1\)
=25+8=33
5: \(3^{19}:3^{16}+5^2\cdot2^3-1^{2021}\)
\(=3^3+25\cdot8-1\)
=200+26=226
6: \(3^6:3^5+2\cdot2^3+2021^0\)
\(=3+2^4+1\)
=4+16=20
Bài 8:
a) Ta có:
\(\widehat{N_1}+\widehat{N_2}=180^o\\ =>\widehat{N_1}=180^o-\widehat{N_2}=180^o-125^o=55^o\)
\(\widehat{M_1}=\widehat{N_1}=55^o\)
Mà hai góc này ở vị trí đồng vị
`=>x`//`y`
b) Ta có:
\(\widehat{P_1}+\widehat{P_2}=180^o\\ =>\widehat{P_1}=180^o-\widehat{P_2}=180^o-140^o=40^o\)
\(\widehat{P_1}=\widehat{Q_1}=40^o\)
Mà hai góc này ở vị trí đồng vị
`=>a`//`b`
bài 1:
a:
\(\dfrac{15}{8}=1,875;-\dfrac{99}{20}=-4,95;\dfrac{40}{9}=4,\left(4\right);-\dfrac{44}{7}=-6,\left(285714\right)\)
b: Các số thập phân vô hạn tuần hoàn là:
4,(4); (-6,285714)
Bài 7: Độ dài đường chéo hình vuông là:
\(\sqrt{5^2+5^2}=\sqrt{25+25}=\sqrt{50}=5\sqrt{2}\left(cm\right)\)
Bài 6: Diện tích sân là:
\(10125000:125000=81\left(m^2\right)\)
Chiều dài cạnh của sân là: \(\sqrt{81}=9\left(m\right)\)
A = (\(\dfrac{1}{x-\sqrt{x}}\) + \(\dfrac{1}{\sqrt{x}+1}\)) : \(\sqrt{x}\) + \(\dfrac{1}{x-2\sqrt{x}+1}\)
Có phải đề bài như này không em?
Bài 2:
a) Mệnh đề phủ định là: \("\exists x\in R;n⋮̸n"\)
Mà `n⋮n` với mọi n => Mệnh đề sai
b) Mệnh đề phủ định là: \("\forall x\in Q;x^2\ne2"\)
Ta có: \(x^2\ne2\Leftrightarrow x\ne\pm\sqrt{2}\)
Mà: \(\pm\sqrt{2}\notin Q\) => Mệnh đề đúng
c) Mệnh đề phủ định là: \("\exists x\in R;x\ge x+1"\)
Mà: `x<x+1` với mọi x
`=>` Mệnh đề sai
d) Mệnh đề phủ định là \("\forall x\in R;3x=x^2+1"\)
Ta có: `3x=x^2+1`
`<=>x^2-3x+1=0`
\(\Delta=\left(-3\right)^2-4\cdot1\cdot1=5>0=>\left[{}\begin{matrix}x=\dfrac{3-\sqrt{5}}{2}\\x=\dfrac{3+\sqrt{5}}{2}\end{matrix}\right.\)
=> `3x=x^2+1` chỉ đúng với 2 giá trị
=> Mệnh đề sai
Bài 1: "\(\forall x\in R;\exists y\in R;y=x+3\)"
=>Mệnh đề này đúng vì với mọi giá trị của x luôn tồn tại một giá trị của y sao cho y=x+3
Mệnh đề phủ định là: "\(\exists x\in R;\forall y\in R;y\ne x+3\)"
`(x-5)^2024=(2024^2025*2025^2024)^0`
`=>(x-5)^2024=1`
`=>(x-5)^2024=1^2024`
`TH1:x-5=1`
`=>x=5+1`
`=>x=6`
`TH2:x-5=-1`
`=>x=-1+5`
`=>x=4`
Bài 2:
\(a,2^{10}+2^9\\ =2^9\cdot\left(2+1\right)\\ =3\cdot2^9⋮3\\ b,2^{10}+2^9+2^8\\ =2^8\cdot\left(2^2+2+1\right)\\ =7\cdot2^8⋮7\\ c,5^{2023}+5^{2022}\\ =5^{2022}\cdot\left(5+1\right)\\ =6\cdot5^{2022}⋮6\\ d,2^{10}-3\cdot2^7\\ =2^7\cdot\left(2^3-3\right)\\ =5\cdot2^7⋮5\\ e,7^{10}-7^8\\ =7^8\cdot\left(7^2-1\right)\\ =7^8\cdot48⋮48\\ f,16^5+2^{15}\\ =\left(2^4\right)^5+2^{15}\\ =2^{20}+2^{15}\\ =2^{15}\cdot\left(2^5+1\right)\\ =33\cdot2^{15}⋮33\\ g,8^8+4^{10}\\ =\left(2^3\right)^8+\left(2^2\right)^{10}\\ =2^{24}+2^{20}\\ =2^{20}\cdot\left(2^4+1\right)\\ =17\cdot2^{20}⋮17\\ h,81^7-27^9-9^{13}\\ =\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\\ =3^{28}-3^{27}-3^{26}\\ =3^{26}\cdot\left(3^2-3-1\right)\\ =3^{26}\cdot5\\ =3^{24}\cdot\left(3^2\cdot5\right)\\ =45\cdot3^{24}⋮45\)
Ta có:
\(\dfrac{4}{5}\) thế kỉ \(=80\) năm
Cây đo đó trồng năm là:
\(2024-80=1944\left(năm\right)\)
Giải:
Đổi \(\dfrac{4}{5}\) thế kỷ = 100 năm x \(\dfrac{4}{5}\) = 80 năm
Cây đa của làng được trồng vào năm:
2024 - 80 = 1944 (năm)
Đáp số: năm 1944
Bài 6:
Tổng số thóc ở ba kho sau khi đổ thêm 15 tấn vào kho thứ nhất và bớt ra ở kho thứ hai 21 tấn là:
183+15-21=183-6=177(tấn)
Số thóc ở mỗi kho sau đó là 177:3=59(tấn)
Số thóc ở kho thứ nhất ban đầu là 59-15=44(tấn)
Số thóc ban đầu ở kho thứ hai là 59+21=80(tấn)
Số thóc ban đầu ở kho thứ ba là:
183-44-80=59(tấn)
Bài 7: Tổng số thóc ở ba kho sau khi lấy ra ở kho thứ nhất 17 tấn và bớt ra ở kho thứ hai 19 tấn là:
156-17-19=120(tấn)
Số thóc ở mỗi kho sau đó là:
120:3=40(tấn)
Số thóc ban đầu ở kho thứ nhất là 40+17=57(tấn)
Số thóc ban đầu ở kho thứ hai là 40+19=59(tấn)
Số thóc ban đầu ở kho thứ ba là:
156-57-59=40(tấn)
Đây là toán nâng cao chuyên đề toán hai hiệu số, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Hiệu số học sinh mỗi tổ trong hai cách chia là:
10 - 9 = 1 (học sinh)
Hiệu số học sinh trong hai cách chia là:
3 + 1 = 4 (học sinh)
Số tổ là: 4 : 1 = 4 (tổ)
Số học sinh lớp 5A là: 9 x 4 + 1 = 37 (học sinh)
Đáp số: