Giúp em bài 8 với ạ cần gấp lắm lùn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đổi 3 giờ 30 phút = 3,5 giờ
Quãng đường AB dài:
3,5 x 32 = 112 (km)
b. Ô tô đi với vận tốc:
112 : 2 = 56 (km/h)
Đáp số: 56 (km/h)
Giải:
a) Xác suất thực nghiệm để gieo được đỉnh số 2 là:
\(5:20=\dfrac{5}{20}\)\(=\dfrac{1}{4}\)
Vậy xác suất thực nghiệm để giao được đỉnh số 2 là \(\dfrac{1}{4}\).
b) Xác suất thực nghiệm để gieo được đỉnh có số chẵn là:
\(\left(5+5\right):20=\dfrac{10}{20}=\dfrac{1}{2}\)
Vậy xác suất thực nghiệm để gieo được đỉnh có số chẵn là \(\dfrac{1}{2}\).
Có \(\left|\Omega\right|=C^2_{21}\)
Gọi A là biến cố: "Chọn được 2 viên bi cùng màu."
TH1: Chọn được 2 viên bi màu xanh.
\(\Rightarrow\) Có \(C^2_8\) cách.
TH2: Chọn được 2 viên bi màu đỏ.
\(\Rightarrow\) Có \(C^2_7\) cách.
TH3: Chọn được 2 viên bi màu vàng.
\(\Rightarrow\) Có \(C^2_6\) cách.
\(\Rightarrow\left|A\right|=C^2_8+C^2_7+C^2_6=64\)
\(\Rightarrow P\left(A\right)=\dfrac{\left|A\right|}{\left|\Omega\right|}=\dfrac{64}{C^2_{21}}=\dfrac{32}{105}\)
Không gian mẫu: \(C_{21}^2\)
Số cách chọn được 2 bi cùng màu là: \(C_8^2+C_7^2+C_6^2\)
Xác suất: \(P=\dfrac{C_8^2+C_7^2+C_6^2}{C_{21}^2}=\)
Bài 8:
Thay x=3 vào phương trình, ta được:
\(\left(3+2\right)\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=3^2-1\)
=>\(5\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=8\left(1\right)\)
Thay x=1/3 vào phương trình, ta được:
\(\left(\dfrac{1}{3}+2\right)\cdot f\left(\dfrac{1}{3}\right)-f\left(3\right)=\left(\dfrac{1}{3}\right)^2-1\)
=>\(\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)-f\left(3\right)=-\dfrac{8}{9}\)
=>\(f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{8}{9}\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}5\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=8\\f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{8}{9}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{35}{3}\cdot f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{56}{3}\\f\left(3\right)-\dfrac{7}{3}\cdot f\left(\dfrac{1}{3}\right)=\dfrac{8}{9}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{32}{3}\cdot f\left(3\right)=\dfrac{56}{3}-\dfrac{8}{9}=\dfrac{160}{9}\\5\cdot f\left(3\right)-f\left(\dfrac{1}{3}\right)=8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}f\left(3\right)=\dfrac{5}{3}\\f\left(\dfrac{1}{3}\right)=5\cdot\dfrac{5}{3}-8=\dfrac{25}{3}-8=\dfrac{1}{3}\end{matrix}\right.\)
vậy: \(f\left(\dfrac{1}{3}\right)=\dfrac{1}{3}\)