×-1/1 + ×-1/2 =×/3 +×/4 -7/12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left|x-9\right|+\left|2-x\right|\ge\left|x-9+2-x\right|=\left|-7\right|=7\)
Dấu "=" xảy ra:
\(\left(x-9\right)\left(2-x\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-9\ge0\\2-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-9\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow2\le x\le9\)
\(\dfrac{4}{15}< \dfrac{x}{30}< \dfrac{1}{3}\)
=>\(\dfrac{8}{30}< \dfrac{x}{30}< \dfrac{10}{30}\)
=>8<x<10
=>x=9
\(\dfrac{4}{15}< \dfrac{x}{30}< \dfrac{1}{3}\\ =>\dfrac{8}{30}< \dfrac{x}{30}< \dfrac{10}{30}\\ =>8< x< 10\)
`y-3y+7y=30`
`=> (1-3+7) y = 30`
`=> 5y = 30`
`=> y = 30 : 5`
`=> y = 6`
Vậy `y=6`
\(y-3y+7y=30\\
\Rightarrow y.\left(1-3+7\right)=30\\
\Rightarrow5y=30\\
\Rightarrow y=30:5\\
\Rightarrow y=6\)
Vậy \(y=6\)
`x^2 + 12x + 36 - 4x^2`
`= x^2 + 2.x . 6 + 6^2 - (2x)^2`
`= (x+6)^2 - (2x)^2`
`= (x+6+2x)(x+6-2x)`
`= (3x + 6)(6-x)`
`= 3(x + 2)(6-x)`
\(x^2+12x+36-4x^2\)
\(=\left(x+6\right)^2-4x^2\)
\(=\left(x+6+2x\right)\left(x+6-2x\right)=\left(-x+6\right)\left(3x+6\right)=3\left(x+2\right)\left(-x+6\right)\)
\(y-3y+7\cdot7=30\)
=>-2y=30-49=-19
=>\(y=\dfrac{19}{2}\)
\(A=2^2+2^4+...+2^{20}\)
\(=2^2\left(1+2^2+...+2^{18}\right)=4\left(1+2^2+...+2^{18}\right)⋮4\)
\(A=2^2+2^4+...+2^{18}+2^{20}\)
\(=2^2\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
\(=5\left(2^2+2^6+...+2^{18}\right)⋮5\)
\(A=1+3+3^2+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=40+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+3^8\right)⋮40\)
Để ý thấy rằng \(1+3+3^2+3^3=40\)
\(A=1+3+3^2+3^3+...+3^{11}\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4\times40+3^8\times40\)
\(=40\left(1+3^4+3^8\right)\)
Do đó A chia hết cho 40
Áp dụng BĐT trị tuyệt đối, ta có:
\(\left|x-9\right|+\left|2-x\right|\ge\left|x-9+2-x\right|=\left|7\right|=7\)
Dấu "=" xảy ra khi: \(\left(x-9\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-9\ge0\\2-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-9\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge9\\x\le2\end{matrix}\right.\left(\text{vô lí}\right)\\\left\{{}\begin{matrix}x\le9\\x\ge2\end{matrix}\right.\end{matrix}\right.\\ \Rightarrow2\le x\le9\)
\(\left|x-9\right|+\left|2-x\right|=7\)
Ta có : \(\left|x-9\right|+\left|2-x\right|\ge\left|x-9+2-x\right|=7\)
Nên \(x=0\) là nghiệm phương trình đã cho.
\(\dfrac{x-1}{1}+\dfrac{x-1}{2}=\dfrac{x}{3}+\dfrac{x}{4}-\dfrac{7}{12}\\ =>x-1+\dfrac{x}{2}-\dfrac{1}{2}=\dfrac{x}{3}+\dfrac{x}{4}-\dfrac{7}{12}\\ =>\left(x+\dfrac{x}{2}\right)+\left(-1-\dfrac{1}{2}\right)=\left(\dfrac{x}{3}+\dfrac{x}{4}\right)-\dfrac{7}{12}\\ =>\dfrac{3}{2}x-\dfrac{3}{2}=\dfrac{7x}{12}-\dfrac{7}{12}\\ =>\dfrac{3}{2}x-\dfrac{7}{12}x=-\dfrac{7}{12}+\dfrac{3}{2}\\ =>\dfrac{11}{12}x=\dfrac{11}{12}=\\ =>x=\dfrac{11}{12}:\dfrac{11}{12}\\ =>x=1\)