CMR:
a) biểu thức A=x2+x+1 luôn luôn dương với mọi x
b)biểu thức B=x2-xy+y2luôn luôn dương với mọi x,y không đồng thời bằng 0
c)biểu thức C=4x-10-x2luôn luôn âm với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=x2y2+y2z2+x2z2+2xy2z+2xyz2+2x2yz+x4+y2z2-2x2yz+y4+x2z2-2xy2x+z4+x2y2-2xyx2=
=x4+y4+z4+2x2y2+2y2z2+2x2z2=(x2+y2+z2)2=102=100
= (ax+a-ay) + (by-bx-b)
= a nhân ( x+1-y) + b nhân ( y-x-1 )
= a nhân ( x+1-y) - b nhân ( x+1-y )
= (x+1-y) nhân (a-b)
Bài 3 Tính nhanh
A, 892^2+892.216+108^2 B, 36^2+26^2-52.36
=892^2+2.892.108+108^2 =36^2-52.62+26^2
=(892+108)^2
=1000^2
=1000000
Bài 4 Phân tích đa thức sau thành nhân tử
X^3-2x^2+x
5(x-y)-y(x-y)
36-12x+x^2
4x^2+12x-9
Bài 3:
\(892^2+892.216+108^2=892^2+2.892.108+108^2=\left(892+108\right)^2=1000000\)
\(36^2+26^2-52.36=36^2-2.26.36+26^2=\left(36-26\right)^2=100\)
Bài 4:
\(x^3-2x^2+x=x.\left(x^2-2x+1\right)=x.\left(x-1\right)^2\)
\(5.\left(x-y\right)-y.\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)
\(36-12x+x^2=x^2-12x+36=x^2-2x.6+6^2=\left(x-6\right)^2\)
\(4x^2+12x-9=\left(2x\right)^2+2.2x.3+3^2=\left(2x+3\right)^2\)
= (2x^2)^2 -2 nhân 2x^2 nhân 2x + (2x)^2
= (2x^2 - 2x)
\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=\left(x^2+2x\right)+\left(3x+6\right)\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+2\right)\left(x+3\right)\)
a) \(A=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0,\forall x\).
b) \(B=x^2-xy+y^2=x^2-xy+\frac{1}{4}y^2+\frac{3}{4}y^2=\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\ge0\)
Dấu \(=\)khi \(\hept{\begin{cases}x-\frac{1}{2}y=0\\y=0\end{cases}}\Leftrightarrow x=y=0\).
c) \(C=4x-10-x^2=-\left(x^2-4x+4\right)-6=-\left(x-2\right)^2-6< 0,\forall x\).
a) \(x^2+x+1\)
\(=x^2+x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Ta có đpcm