khó quá giải hộ đê :
9 mũ 9 + 9 mũ 10 ..... 9 mũ 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\cdot5^2-3\cdot2^3+3^3\cdot3^2\)
\(=4\cdot25-3\cdot8+3^{2+3}\)
\(=100-24+3^5\)
\(=100-24+243\)
\(=343-24\)
\(=319\)
3n + 5 chia hết cho 2n + 1
⇒ 2(3n + 5) chia hết cho 2n + 1
⇒ 6n + 10 chia hết cho 2n + 1
⇒ 6n + 3 + 7 chia hết cho 2n + 1
⇒ 3(2n + 1) + 7 chia hết cho 2n + 1
⇒ 7 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(7) = {1; -1; 7; -7}
⇒ n ∈ {0; -1; 3; -4}
Mà: n ∈ N
⇒ n ∈ {0; 3}
\(A=24\cdot6^3\)
\(A=4\cdot6\cdot\left(2\cdot3\right)^3\)
\(A=2^2\cdot2\cdot3\cdot2^3\cdot3^3\)
\(A=\left(2^2\cdot2\cdot2^3\right)\cdot\left(3\cdot3^3\right)\)
\(A=2^6\cdot3^4\)
\(A=2+2^2+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)
\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy A chia hết cho 3
_______________
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\)
\(A=2\cdot5+2^2\cdot5+...+2^{58}\cdot5\)
\(A=5\cdot\left(2+2^2+...+2^{58}\right)\)
Vậy A ⋮ 5
___________________
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)
\(A=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy A ⋮ 7
\(24\cdot\left(x-16\right)=144\)
\(\Rightarrow x-16=\dfrac{114}{24}\)
\(\Rightarrow x-16=6\)
\(\Rightarrow x=6+16\)
\(\Rightarrow x=22\)
Vậy: \(x=22\)
24 . ( x - 16 ) = 144
( x - 16 ) = 144 : 24
x - 16 = 6
x. = 6 + 16
x. = 22
\(10^4\cdot\left[4\cdot\left(5^2-5\right)\right]+25\)
\(=1000\cdot\left[4\cdot\left(25-5\right)\right]+25\)
\(=1000\cdot\left(4\cdot20\right)+25\)
\(=1000\cdot80+25\)
\(=80000+25\)
\(=80025\)
\(\left(\dfrac{1}{2}\right)^3\cdot\left(\dfrac{1}{4}\right)^2\)
\(=\left(\dfrac{1}{2}\right)^3\cdot\left[\left(\dfrac{1}{2}\right)^2\right]^2\)
\(=\left(\dfrac{1}{2}\right)^3\cdot\left(\dfrac{1}{2}\right)^{2\cdot2}\)
\(=\left(\dfrac{1}{2}\right)^3\cdot\left(\dfrac{1}{2}\right)^4\)
\(=\left(\dfrac{1}{2}\right)^{3+4}\)
\(=\left(\dfrac{1}{2}\right)^7\)
Ta có: \(A=1+2+2^2+...+2^{2015}\)
\(2A=2\cdot\left(1+2+2^2+...+2^{2015}\right)\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=2+2^2+...+2^{2016}-1-2-2^2-...-2^{2015}\)
\(A=2^{2016}-1\)
A không thể biết dưới dạng lũy thừa của 8 được
Đặt: \(A=9^9+9^{10}+...+9^{20}\)
\(9A=9\cdot\left(9^9+9^{10}+...+9^{20}\right)\)
\(9A=9^{10}+9^{11}+...+9^{21}\)
\(9A-A=9^{10}+9^{11}+...+9^{21}-9^9-9^{10}-...-9^{20}\)
\(8A=9^{21}-9^9\)
\(A=\dfrac{9^{21}-9^9}{8}\)
Đặt $A=9^9+9^{10}+...+9^{20}$
$9\cdot A=9\cdot(9^9+9^{10}+...+9^{20})$
$9A=9^{10}+9^{11}+...+9^{21}$
$9A-A=(9^{10}+9^{11}+...+9^{21})-(9^9+9^{10}+...+9^{20})$
$8A=9^{21}-9^9$
$\Rightarrow A=\dfrac{9^{21}-9^9}{8}$